:::

詳目顯示

回上一頁
題名:電腦立體模型模擬動畫教學對國中學生空間能力提昇之研究
作者:賴良助
作者(外文):Liang-Chu Lai
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
指導教授:戴文雄
學位類別:博士
出版日期:2010
主題關鍵詞:空間能力空間能力提昇認知型態場地獨立場地依賴spatial abilityspatial ability learning materialcognitive stylefield-independentfield-dependent
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:57
摘 要
本研究旨在探討電腦立體模型模擬動畫教學對國中學生空間能力提昇之研究。為有效達成本研究目的,本研究採取不等組準實驗設計進行研究。使用的研究工具包含:學生基本資料問卷、空間能力測驗前、後測量表、認知型態量表、空間能力提昇教材(電腦立體模型模擬動畫教材與傳統教材)等。
本研究之研究樣本為九十八學年度註冊於彰化縣立大村國民中學一年級共六個班學生為研究對象以班為單位進行隨機抽樣分派到實驗A組(電腦立體模型模擬動畫)、實驗B組(傳統教學)及控制組。各組實際有效樣本分別為:實驗A組:66人;實驗B組:64人;及控制組:65人,實際總有效樣本數為195人。所收集的實驗資料分別以成對樣本t檢定(Paired-t)檢定、單因子單變量共變數分析(ANCOVA)及單因子多變量共變數分析(MANCOVA)等統計方法考驗研究假設,獲得研究發現與研究結論。
本研究主要的研究結果如下:
一、 常玩積木學生接受空間能力提昇教學後在空間能力後測上顯著高於不常玩學生。
二、 場地獨立國中學生接受空間能力提昇教學在空間能力後測上顯著高於場地依賴學生。
三、 國中學生接受空間能力教學後實驗組空間知覺後測上顯著高於控制組。
四、 國中學生接受空間能力教學後實驗組空間辨識後測上顯著高於控制組。
五、 國中學生接受空間能力教學後實驗A組空間辨識後測顯著高於實驗B組。
六、 國中學生接受空間能力教學後實驗A組空間旋轉後測顯著高於實驗B組。
七、 國中學生接受空間能力教學後實驗A組空間切割後測顯著高於實驗B組。
ABSTRACT
The purpose of this study was to inquire computer simulated 3-D models animation teaching on improving students’ spatial ability in junior high school. To reach this purpose, the study employed a quasi experiment research design. The instruments contained demographic survey, spatial ability pre-test, spatial ability post-test, cognitive style test, and computer simulated 3-D models animation materials of spatial ability.
Subjects were students from six classes of the first grade of Dacun junior high school in Changhua city, 2009. The six classes were randomly selected as three groups: control group, experimental group A (Simulated 3-D Models material), and experimental group B (traditional material).
The collected data were analyzed by paired t-test, one-way ACONOVA and one-way MANCOVA.
In conclusion, the following are the major findings of this study:
1. The students have more experiences in LEGO game exhibited significantly higher results than the others in the spatial ability post-test.
2. The field-independent students exhibited significantly higher results than the filed-dependent students in the spatial ability post-test.
3. The experimental group students exhibited significantly higher results than the control group students in the spatial perception ability post-test.
4. The experimental group students exhibited significantly higher results than the control group students in the spatial identifying ability post-test.
5. The experimental group A students exhibited significantly higher results than the experimental group B students in the spatial identifying ability post-test.
6. The experimental group A students exhibited significantly higher results than the experimental group B students in the mental rotation ability post-test.
7. The experimental group A students exhibited significantly higher results than the experimental group B students in the mental cutting ability post-test.
參考書目
壹、中文部份
朱錦鳳(2005)。圖形思考智能測驗的發展。中華民國測驗學會測驗學刊,50(1),25-46。new window
吳靜吉(1974)。藏圖測驗。台北:遠流出版社。
吳鐵雄(1994)。Hypertext電腦輔助教學之學習型態與概念發展。(國科會專案報告:NSC83-0111-S-024-033)
李永吟(1989)。教學原理。台北:遠流出版社。
李珀(2000)。多元智慧與教學。教師天地,106,22-31。
林小慧、熊召弟、林世華(2006)。具體影像空間教學策略與鍾學生空間能力之相關研究。教育心理學報,37 (4),393-409。new window
林邦傑(1982)。國中學生場地獨立性與具體運思、形式運思之關係。中華心理學刊,24(2),101-110。new window
洪蘭(2000)。腦內乾坤:男女有別,其來有自。台北市:遠流出版社。
康鳳梅(2001)。高工學生正投影空間能力與問題解決能力之研究。(國科會專案報告:NSC89-2516-S-018-036)
郭生玉(1998)。心理與教育測驗。台北:精華書局。
郭章淵(2002)。建築設計專業人員空間能力評估因子之研究。中華民國建築學會第十四屆建築研究成果發表會論文集。台北:淡江大學。
陳玉玲(1999)。概念改變教學策略對地球運動概念之教學效果—以國小六年級學生為例。國立政治大學博士論文。全國博碩士論文資訊網,88NCCU0332026。new window
陳欣進、簡伯丞、鄭秋瑾、吳瑞屯(2002)。認知取向心像旋轉能力測驗在飛訓甄選上之應用。中華心理學刊,44(2),227-238。new window
陳湘淳、李玉琇(2005)。記憶策略訓練對工作記憶容量的影響。教育心理學報,37(1),41-59。new window
路君約、歐滄和、盧欽銘(1989)。修訂區分性向測驗。臺北:中國行為科學社。
廖焜熙(1998)。有機立體化學成就影響因素及解題模式之研究。國立臺灣師範大學博士論文。全國博碩士論文資訊網,087NTNU0231011。new window
蔣家唐(1996)。資優生視覺空間認知能力研究。(國科會專案報告:NSC 85-2511-S018-004)
戴文雄(1994)。學習型態與電腦輔助學習對機械製圖學習成效之研究。第九屆全國技術及職業教育研討會論文集,231-240。台南:崑山技術學院。
戴文雄(1996)。不同正增強回饋型式電腦輔助學習系統對不同認知型態與空間能力高工學生機械製圖學習成效之研究。(國科會專案報告:NSC86-2516-S- 018-010-TG)
戴文雄(1998)。不同正增強回饋型式電腦輔助教學系統對不同認知型態與空間能力高工學生機械製圖學習成效之研究。(國科會專案報告:NSC87-2516-S-018- 010-TG)
戴文雄、賴良助、林茂宏(2003)。國中學生空間能力內涵之建構。工業教育學刊,27,55-64.
戴文雄、游朝煌、陳培文(1994)。高工學生空間觀念對機械製圖學習成效與態度之研究。(國科會專案報告:NSC-83-0111-S-018-023)




貳、英文部分:
Ackerman, P. L. (1988). Determinants of individual differences during skill acquisition: Cognitive abilities and information processing. Journal of Experimental Psychology, General, 117, 288-318.
Amit, X. G., Geoff, N., & Lawrence, S. (2001). How medical students learn spatial anatomy. The Lancet, 357, 363-364.
Anamuah-Mensay, J. (1986). Cognitive strategies used by chemistry students solve volumn etrican analysis problems. Journal of Research in Science Teaching, 23 (9), 759-762.
Anastasi, A. (1982). Psychology testing (5th ed.,). NY: Macmillan Publishing.
Atkinson, R., & Shiffrin, R. (1968). Human memory: A proposed system and its control processes. In K. Spence. & J. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory, (2). NY: Academic Press.
Baddeley, A. D. (1999). Essentials of human memory. UK: Psychology Press LTD.
Baddeley, A. D. (2000). The episodic buffer: A new component for working memory. Trends in Cognitive Science, 4, 417-423.
Baddeley, A. D. (2003). Working memory and language: An overview. Journal of Communication Disorders, 36, 189-208.
Baenninger, M., & Newcombe, N. (1995). Environmental input to the development of sex related differences in spatial and mathematical ability. Learning and Individual Differences, 7, 363-379.
Baenninger, M., & Newcombe, N. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20, 327-344.
Barke, H. D. (1993). Chemical education and spatial ability. Journal of Chemical Engineering, 70, 968-971.
Battista, M. T. (1990). Spatial visualization and gender difference in high school geometry. Journal for Research in Mathematics Education, 21(1), 41-60.
Battista, M. T., Wheatley, G. H., & Talsma, G. (1982). The importance of spatial visualization and cognitive development for geometry learning in preservice elementary teachers. Journal for Research in Mathematics Education, 13, 332-340.
Ben-Chaim, D., Lappan, G., & Hougang, R. T. (1998). The effect of instruction on spatial visualization skills of middle school boys and girls. American Educational Research Journal, 25, 51-71.
Benjamin, A., & Hilmar, N. (1998). Gender differences in spatial abilities and spatial activity among university students in an egalitarian educational system. Sex Roles, 38, 1009-1023.
Bennett, C. C., Johnson, A., Field, D. J., & Elbourne, D. (2001). UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation: Follow-up to age 4 years. The Lancet, 357, 79-89.
Bertoline, G. R. (1998). Visual science: an emerging discipline. Journal for Geometry and Graphics, 2(2), 181-187.
Bisop, A. J. (1980). Spatial abilities and mathematics education-are view. Educational Studies in Mathematics, 11, 257-269.
Cameron, B., & Dwyer, F. (2005). The effect of online gaming, cognition and feedback type in facilitating delayed achievement of different learning objectives. Journal of Interactive Learning Research, 16(3), 243-259.
Brosnan, M. J. (1998). Spatial ability in children's play with Lego blocks. Perceptual and Motor Skills, 87, 19-28.
Burkhalter, B. B., & Schaer, B. B. (1985). The sect of cognitive style and cognitive learning in a nontraditional educational setting. Educational Research Quarterly, 9(4), 12-18.
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. NY: Cambridge University Press.
Carter, C. S., LaRussa, M. A., & Bodner, G. M. (1987). A study of two measures of spatial ability as predictors of success in different levels of general chemistry. Journal of Research in Science Teaching, 24(7), 645-657.
Casey, M. B. (1996). Understanding individual differences in spatial ability within females: A nature/ nurture interactionist framework. Developmental Review, 16, 241-260.
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54, 1-22.
Charlotte, C. B., Ann, J., David, J. F., & Diana, E. (2002). UK collaborative randomised trial of neonatal extracorporeal membrane oxygenation: Follow up to age 4 years. The Lancet, 359, 1094-1096.
Chase, W. G., & Chi, M. T. (1981). Cognitive skill: Implications in large scale environments. In J. H. Harvey, Cognition, social behavior, and the environment, Hillsdale, (Ed., pp. 111-136). NJ: Erlbaum Assoc.
Chen, S.Y. (2002). A cognitive model for non-linear learning in hypermedia programmers. British Journal of Educational Technology, 33(4), 449-460.
Chinien, C. A., & Boutin, F. (1993). Cognitive style FD/I: An important learner characteristic for educational technologists. Journal of Educational Technology Systems, 21, 303-311.
Chen, C. W., Lee, C. F., & Chang, C. C. (2009). Effect of individual cognitive styles on control-display device ability: An experimental study. International Journal of Management, 26(2), 46-58.

Claudia, Q. P., Wolfgang, L. (2002). Girls' spatial abilities: Charting the contributions of experiences and attitudes in different academic groups. The British Journal of Educational Psychology, 72 (2), 245-255.
Clements, D. H., & Michael, T. B. (1992). Geometry and spatial reasoning. In D. A. Grouws, In handbook of Research on Mathematics Teaching and Learning, (Ed., pp. 420-464). NY: Macmillan Publishing.
Cohen, C. A., & Hegarty, M. (2007). Individual differences in use of an external visualization while performing an internal visualization task. Applied cognitive psychology, 21, 701-711.
Cohen, K. M. (2002). Relationships among childhood sex-atypical behavior, spatial ability, handedness, and sexual orientation in men. Archives of Sexual Behavior, 31(1), 129-143.
Cohen, V. B. (1985). Are examination of feedback in computer-based instructional design. Educational Technology, 25(1), 33-37.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. NJ: Hove and London.

Coleman, S. L., & Gotch, A. J. (1998). Spatial perception skills of chemistry students. Journal of Chemical Research, 75(2), 206-209.
Connor, J. M., Serbin, L. A., & Schackman, M. (1977). Sex differences in children's response to training on visual-spatial test. Developmental Psychology, 13, 293-294.
Daniel, V., Carla, N., & Susan, V. (2000). The relation between experience and spatial performance in men and women. Sex Roles, 43, 891-915.
Ku, D. T., & Soulier, J. S. (2009). The effects of learning goals on learning performance of field-dependent and field-independent late adolescents in a hypertext environment. Adolescence, 44(175), 651-665.
Devon, R., Engel, R., & Turner, G. (1998). The effects of spatial visualization skill training on gender and retention in engineering. Journal of Women and Minorities in Engineering, 6(4), 371-380.
Donelson, F. L. (1990). The development, testing, and used of a computer interface to evaluate an information processing model describing the rate of encoding and mental rotation in high students of high and low spatial ability. (ERIC Document Reproduction Service No. ED326396).
Dreyfus, T. (1991). On the status of visual reasoning in mathematics and mathematics education. Proceedings of PME, 15, 158-192.
Dreyfus, T. (1995). Imagery for diagrams. In R. Sutherland & J. Mason, Exploiting Mental Imagery with Computers in Mathematics Education,(Eds., pp. 3-19). Berlin: Springer-Verlag.
Ekstrom, R. B., French, J. W., & Harman, H. H. (1976). Kit of Factor Referenced Cognitive Tests. NJ: Educational Testing Service, Princeton.
Emiko, T. (2004). A mental cutting test using drawing of intersection. Journal for Geometry and Graphics, 8 (1), 117-126.
Emmorey, K., Kosslyn, S. M., & Bellugi, U. (1993). Visual imagery and visual-spatial language: Enhanced imagery abilities in deaf and hearing ASL signers. Cognition, 46, 139-181.
Federico, P. N., & Landis, D. B. (1984). Cognitive styles, abilities, and attitudes: Are they dependent or independent? Contemporary Educational Psychology, 9, 146-161.
Fennema, E., & Sherman, J. (1978). Sex-related differences in mathematics achievement and related factors: A further study. Journal for Research in Mathematics Education, 9(3), 189-203.
Francis, M. D., & David, M. M. (1995). Effect of color coding and test type (Visual/Verbal) on student identified as possessing different field dependence levels. Selected Readings from the Annual Congruence of the International Visual Literacy Association, 2, 289-301.
French, J. W. (1951). The description of aptitude and achievement tests in terms of rotated factors. Chicago: University of Chicago Press.
Fuller, L. R., & Kaplan, S. E. (2004). A note about the effect of auditor cognitive style on task performance. Behavioral Research in Accounting, 16, 131-144.
Gabne, R. M. (1985). The conditions of learning and theory of instruction, NJ: CBS College Publishing.
Gagńe, R. M. (1978). Essential of learning for instruction, IL: Dryden Press.

Gagnon, D. (1985). Videogames and spatial skills: An exploratory study. Educational Communication and Technology Journal, 33, 263-275.
Gardner, H. (1993). Multiple Intelligences: The theory in practice. NY: Basic Books.
Gardner, H. (1983). Frames of mind: The theory of multiple intelligence. NY: Basic Books.
Garg A. X., Norman, G., & Sperotable, L. (2001). How medical students learn spatial anatomy. The Lancet, 357, 363-364.
Geary, D. C. (1998). Male, female: The evolution of human sex differences. Washington, D.C.
Gerson, H., Sorby, S., Wysocki, A., & Baartmans, B. (2001). The development and assessment of multimedia software for improving 3D spatial visualization skills. Computer Applications in Engineering Education, 9, 105-113.
Goodenough, D. R. (1986). History of the field dependence construct. New Jersey, Hillsdale: Lawrence Erlbaum Associates.
Gordon, H, W. (1986). The cognitive laterality battery: Tests of specialized cognitive function. International Journal of Neuroscience, 29, 223-244.
Guzel, N., & Sener, E. (2009). High school students’ spatial ability and creativity in geometry. Social and Behavioral Sciences, 1763-1766.
Halpern, D. F., & LaMay, M. L. (2000). The smarter sex: A critical review of sex differences in intelligence. Educational Psychology Review, 12, 229-246.
Hannafin, R. D., & Scott, B. N. (1998). Identifying critical learner traits in a dynamic computer-based geometry program. The Journal of Educational Research, 92, 3-12.
Harman, B. H. (1984). A corelational study of the correspondence between achievement in calculus and complementary cognitive style. Dissertation Abstracts international, 45, 738-740.
Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple model use in grade 11 chemistry. Science Education, 84, 352-381.
Hasan, U. (2008). Mathematics teaching. Derby: Iss, 209, 42-43.
Hegarty, K., Khooshabeh, A. & Montello, S. (2009). How spatial abilities enhance, and are enhanced by, dental education. Learning and Individual Differences, 19, 61-70.
Hilmar, N., & Benjamin, A. (1998). Sex roles: Gender differences in spatial abilities and spatial activity among university students in an egalitarain educational system. NY: Jun.
Hodson, K. E. (1985). Cognitive style and behavioral differences of nursing students in the clinical setting. Journal of Nursing Education, 24, 58-62.
Holley, C. D., & Dnsereau, D. F. (1984). Spatial learning strategies. NY: Academic press.
Hsi, S., Linn, M., & Bell, J. (1997). The role of spatial reasoning in engineering and the design of spatial instruction. Journal of Engineering Education, 86(2), 151-58.
Huk, T. (2006). Who benefits from learning with 3D models? The case of spatial ability. Journal of Computer Assisted Learning, 22, 392-404.
Ishikawa, T., & Kastens, K. A. (2005). Why some students have trouble with maps and other spatial representations. Journal of Geosciences Education, 53 (2), 184-197.
Isiksal, M., & Askar, P. (2005). The effect of spreadsheet and dynamic geometry software on the achievement and self-efficacy of 7th-grade students. Educational Research, 47, 333-350.
Johnston, W. S., & Mason, J. (2005). Developing thinking in geometry. London, Paul Chapman Publishing.
Jonassen, D. H., & Grabowski, B. L. (1993). Handbook of individual differences, learning, and instruction. Mahwah, NJ: Erlbaum.
Jones, V. C. (1981). Cognitive and the problem of low school achievement among urban black low SES students: Grades 2, 4, and 6. Dissertation Abstracts international, 42, 3074.
Kali, Y., & Orion, N. (1996). Spatial abilities of high-school students in the perception of geologic structures. Journal of Research in Science Teaching, 33, 369-391.
Kali, Y., & Orion, N. (1996). Spatial abilities of high-school students in the perception of geologic structures. Journal of Research in Science Teaching, 33, 369-391.
Kastens, K. A., & Ishikawa, T. (2006). Spatial thinking in the geosciences and cognitive sciences. Geological Society of America Special Paper, 413, 53-76.
Keehner, M. M., Tendick, F., Meng, M. V., Anwar, H. P., Hegarty, M., & Stoller, M. L. (2004). Spatial ability, experience, and skill in laparoscopic surgery. The American Journal of Surgery, 188, 71-75.
Keehner, M., & Gathercole, S. E. (2007). Cognitive adaptations arising from non-native experience of sign language in hearing adults. Memory & Cognition, 35, 752-761.
Kelly, T. L. (1939). The selection of upper and lower groups for the validation of test items. Journal of Educational Psychology, 30, 17-24.
Noble, K. A., Miller, S. M., & Heckman, J. (2008). The cognitive style of nursing students: educational implications for teaching and learning. Journal of Nursing Education, 47 (6), 245-254.
Kinsey, B. L., Towle, E., O'Brien, E. J., & Bauer, C. (2007). Analysis of self-efficacy and ability related to spatial tasks and the effect on retention for students in engineering. International Journal of Engineering Education, 24 (3), 488-494.
Kogan, N. (1972). Educational implications of cognitive styles. In L. Gerald (Ed.), Psychology and educational practice. Glenview, III: Scott Froesman.
Korchin, S. J. (1986). Field dependence, personality theory, and clinical research. (Eds.). New Jersey, Hillsdale: Lawrence Erlbaum Associates.
Kosslyn, C. (1989). Evidence for two types of spatial representations: Hemispheric specialization for categorical and coordinate relations. Journal of Experimental Psychology, 15, 723-735.
Kyle, R. W., Stanley, J. H., Dimitri, J. A., Edward, D. M., & Michael, D. C. (2002). Effect of visual-spatial ability on learning of spatially-complex surgical skills. The Lancet, 359, 230-231.
Lantz, A., & Carlberg, C., & Eaton, V. (1982). Women’s Choice of science as a career. Denver, C. O.: E. S. R. Associates.
Herarty, M., Keehneer, M., Khooshabeh, P., & Montello, D. (2009). How spatial ability enhance, and are enhance by, dental education. Learning and individual differences, 19, 61-70.
Lee, J. (2007). The effects of visual metaphor and cognitive style for mental modeling in a hypermedia-based environment. Interacting with Computers, 19, 614-629.
Lennon, P. A. (2000). Improving students' flexibility of closure while presenting biology content. The American Biology Teacher, 62(3), 177-180.
Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841-845.
Lin, C., & Davidson-Shivers, G. V. (1996). Effects of linking structure and cognitive style on students' performance and attitude in a computer-based hypertext environment. Journal of Educational Computing Research, 15(4), 317-329.
Linn, M., & Petersen, A. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56(6), 1479-1498.
Lisi R. D., & Wolford J. L. (2002). Improving children's mental rotation accuracy with computer game playing. The Journal of Genetic Psychology, 163(3), 272-282.
Liu, M., & Michael, R. W. (1994). The relationship between the learning strategies and learning style in a hypermedia environment. Annual Conference of the Association for Educational Communications and Technology and the Association for the Development of Computer-Based Instructional System.
Lohman, D. F. (1979). Spatial ability: Individual differences in speed and level. Stanford, CA: Stanford University.
Lohman, D. F., Kyllonen, P. C. (1988). Individual differences in solution strategy on spatial and change. NY: Mc GrawHill CO.
Lord, T. R. (1987). Spatial teaching. The Science Teacher, 52 (2), 32-34.
Lord, T. R. (1985). Enhancing the visual-spatial aptitude of students. Journal of Research in Science Teaching, 22 (5), 395-405.
Lord, T. R. (1990). Enhancing learning the life sciences through spatial perception. Innovative Higher Education, 15(1), 5-16.
Lowery, B. R., & Knirk, F. G. (1982). Micro-computer video games and spatial visualization acquisition. Journal of Educational Technology Systems, 11(2), 155-156.
MacNal, W. (1991). Cognitive style and analytic ability and their relationship to competence in the biological science. Journal of Biological Education, 4, 16-28.
Mann, R. L. (2005). Gifted students with spatial strengths and sequential weaknesses: An overlook. Roeper Review, 27(2), 91-96.
Matnewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators. Science Education, 83, 33-54.
Mayer, R. E., & Sims, V. K. (1994). For whom is a picture worth a thousand words? Extensions of a dual-coding theory of multimedia learning. Journal of Educational Psychology, 86(3), 389-401.
McCormack, A. (1988). Visual/spatial thinking: An element of elementary school science. Council for elementary science international. San Diego State University.
McCormick, E. J. (1979). Job analysis: Methods and applications. NY: A division of American Management Associations.
McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918.
McLeay, H. (2006). Imagery, spatial ability and problem solving. Mathematics teaching incorporating Micromath, 5, 36-38.
McVey, D. M. (2001). Understanding concepts in research methodology: The role of spatial ability. Research in Education, 65, 100-109.
Meinholdt, C., & Murray, S. L. (1999). Why aren't there more women engineers? Journal of Women and Minorities in Science and Engineering, 5, 239-264.
Messick, S. (1984). The nature of cognitive styles: Problems and promise in educational practice. Educational Psychologist, 19(2), 59-74.
Messick, S. (1976). Personality Consistencies in Cognition and Creativity. San Francisco: Jossey-Bass, Inc.
Miller, C. (1992). Enhancing visual literacy of engineering students through the use of real and computer generated models. Engineering Design Graphics Journal, 56(1), 27-38.
Miyake, A., & Rettinger, D. A. (2002). Neurology, visuospatial ability may be best test of intelligence. Hepatitis Weekly, Atlanta.
Mumaw, R. J. & Pellegrino, J. W. (1984). Individual differences in complex spatial processing. Journal of Educational Psychology, 76(5), 920-939.
National Research Council. (2006). Learning to think spatially. Washington DC: National Academies Press.
National, Council of Teachers of Mathematics. (1989). Curriculum and Evaluation Standards for School Mathematics. NCTM, Reston, VA.
Newcombe, N., Bandura, M. M., & Taylor, D. G. (1983). Sex differences in spatial ability and spatial activities. Sex Roles, 9, 377-386.
Nordvik, H., & Amponsah, B. (1998). Gender differences in spatial abilities and spatial activity among university students in an Egalitarian educational system. Sex Roles, 38, 1109-1023.
Norman, K. L. (1994). Spatial visualization a gateway to computer-based technology. Journal of Special Educational Technology, 12, 195–203.
Okagaki, L., & Frensch, P. A. (1994). Effects of video game playing on measures of spatial performance: Gender effects in late adolescence. Journal of Applied Developmental Psychology, 15, 33-58.
Onyancha, R. M., Towle, E., & Kinsey, B. L. (2007). Improvement of spatial ability using innovative tools: Alternative view screen and physical model rotator. Engineering Design Graphics Journal, 71(4), 1-8.
Ostrow, C. L. (1986). The interaction of cognitive style, teaching methodology and cumulative GPA in baccalaureate nursing students. Journal of Nursing Education, 25, 148-155.
Pallrand, G., & Seeber, F. (1984). Spatial ability and achievement in introductory physics. Journal of Research in Science Teaching, 21(5), 507-516.
Pani, J. R., Chariker, J. H., Dawson, T. E., & Johnson, N. (2005). Acquiring new spatial intuitions: Learning to reason about rotations. Cognitive Psychology, 51, 285-333.
Papanikolaou, K. A., Mabbott, A., Bull, S., & Grigoriadou, M. (2006). Designing learner-controlled educational interactions based on learning/cognitive style and learner behavior. Interacting with Computers, 18, 356-384.
Piburn, M. D., Reyonlds, S. J., Leedy, D. E., McAuliffe, C. M., Birk, J. P., & Johnson, J. K. (2002). The hidden Earth: visualization of geologic features and their subsurface geometry. Retrieved May 18, 2010, from http://geology.asu.edu/~sreynolds/pubs/NARST_final.pdf.
Pribly, J. R., & Bodner, G. M. (1985). The role of spatial ability and achievement in organic chemistry. (ERIC Document Reproduction Service No. ED255393).
Provo, J., Lamar, C., & Newby, T. (2002). Using a cross-section to train veterinary students to visualize anatomical structures in three dimensions. Journal of Research in Science Teaching, 39, 10-34.
Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mazlan, M. (2005). Improving spatial ability using a Web-based Virtual environment (WbVE). Automation in construction, 14, 707-715.
Rhode, T. E., & Thompson, L. A. (2007). Predicting academic achievement with cognitive ability. Intelligence, 35, 83-92.
Riding, R. & Cheema, I. (1991). Cognitive styles-An overview and integration. Educational Psychology, 11 (4), 193-215.
Roberge, J. J. (1984). Cognitive style. Operatively and reading achievement. American Educational Research Journal, 21(1), 27-36.
Shapiro, A., & Niederhauser, D. (2004). Learning from hypertext: Research issues and findings. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (2nd ed.). Mahwah, NJ: Erlbaum.
Sharon, L, C., & Albert, J. G. (1998). Spatial perception skills of chemistry students. Journal of Chemistry Education, 5, 146-153.
Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of accessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93(3), 604-614.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(972), 701-703.
Sims, V. K., & Mayer, R. E. (2002). Domain specificity of spatial expertise: The case of video game players. Applied Cognitive Psychology, 16, 97-115.
Smith, D. L. & Jonides, J. (1997). Working memory: A view from neuron imaging. Cognitive Psychology, 33, 5-42.
Smith, I. M. (1965). Spatial ability: Its educational and social significance. San Diego: Knapp, 4Osp.
Sorby, S. (2001). A course in spatial visualization and its impact on the retention of female engineering students. Journal of Women and Minorities in Science and Engineering, 3(2), 153-72.
Sorby, S. (2005). Assessment of a "new and improved" course for the development of 3-d spatial skills. Engineering Design Graphics Journal, 69(3), 6-13.
Sorby, S. (2006). Developing 3-d spatial skills for K-12 students. Engineering Design Graphics Journal, 70(3), 1-11.
Sorby, S. (2007). A longitudinal study of the impact of spatial skills training for non-engineering students. American Society of Engineering Education Conference. Honolulu, Hawaii.
Sorby, S. A., Leopold, C., & Gorska, R. (1999). Cross- cultural comparisons of gender differences in the spatial skills of engineering students. Journal of Women and Minorities in Science and Engineering, 5, 279-291.
Sorby, S., & Baartmans, B. (2000). The development and assessment of a course for enhancing the 3-d spatial visualization skills of first year engineering students. Journal of Engineering Education, 89(3), 301-307.
Springer, S. P., & Deutsch, G. (1985). Left brain, right brain. San Francisco: Freeman.
Sternberg, R. J., Wagner, R. K., Williams, W. M., & Horvath, J. A. (1997). Testing common sense. American Psychologist, 50, 912-927.
Stewart, K., & Lyon, R. Freedman, D. (1982). Neuropsychological characteristics of empirically derived subgroups of learning disabled readers. Journal of Clinical Neuropsychological, 4 (4), 343-365.
Study, N. (2006). Using remediation to improve the visualization abilities in minority engineering and technology students. American Society of Engineering Education Conference. Chicago, Illinois.
Stumpf, H. (1993). Performance factors and gender-related differences in spatial ability: Another assessment. Memory & Cognition, 21, 828-836.
Tai, W. S. & Kang, F. M. (1995). A study on task analysis for engineering drawing technicians. Fourth World Conference on Engineering Education (pp. 1520). Saint Paul.
Tai, W. S., Yue, C. H., Chen, H. C., & Chen, P. W. (1995). The study of a spatial ability and computer assisted learning on achievements of engineering drawing. The International Conference on Skill Formation Curriculum and Instruction(61-67). Taiwan.
Talarczyk, G. (1989). Aptitude, pervious achievement, and cognitive style: Relation to academic achievement in nursing courses of differing content. Journal of Nursing Education, 28, 265-270.
Tartre, L. (1990). Spatial skills, gender, and mathematics. NY: Teachers College Press.
Thorndyke, P. W. (1981). Spatial Cognition and Reasoning. In J. H. Harvey, Cognition social behavior and the environment(ed., pp. 137-149). Hillsdale, NJ: Erlbaum Assoc.
Ullstadius, E., Carlstedt, B., & Gustafsson, J. E. (2004). Multidimensional item analysis of ability factors in spatial test items. Personality and Individual Differences, 37, 1003-1012.
Vigil, P. J. (1988). On line retrieval: Analysis and Strategy. NY: John Wiley & Sons.
Von, G. E. (1984). An introduction to radical constructivism. The invented Reality (pp. 17-40). NY: W. W. Norton.
Voyer, D., Nolan, C., & Voyer, S. (2000). The relation between experience and spatial performance in men and women. Sex Roles, 43, 891-915.
Wanzel, K. R., Hamstra, S. J., Anastakis, D. J., Matsumoto, E. D., & Cusimano, M. D. (2002). Effect of visual-spatial ability on learning of spatially-complex surgical skills. The Lancet, 359, 230-231.
Wavering, M. J. (1986). Performance of student sing races six, nine, twelve on five logical, spatial, and formal tasks. Journal of Research in Science Teaching, 23 (4), 321-329.
Wheatley, G. H. (1990). Spatial sense and mathematics learning. Anthmetic Teacher, 37 for worksheets setting out these tasks. Retrieved May 18, 2010, from http//www.atin.org.uk/MT209.
Witkin, H. A. (1976). Cognitive style in academic performance and in teacher-student selections. In S. Messick, Individuality in learning. (ed.) San Francisco: Jossey-Bass.
Witkin, H. A., Faterson, R. B., Goodenough, H. F., & Karp, S. A. (1962). Psychological Differentiation. NY: John Wiley and Sons.
Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of Educational Research, 47, 1-64.
Wu, H. K., & Shah, P. (2004). Thinking with representations: Exploring visuo-spatial thinking in chemistry learning. Science Education, 88, 465-492.
Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students' use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38, 821-842.
Zavotka, S. (1985). The use of three-dimensional computer graphics animation to teach spatial skills to home economics college students. Unpublished doctoral dissertation, Ohio state university.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE