:::

詳目顯示

回上一頁
題名:議題式行動導向科學教學之設計與實踐
作者:陳仕燁 引用關係
作者(外文):Shih-Yeh Chen
校院名稱:國立臺灣師範大學
系所名稱:科學教育研究所
指導教授:劉湘瑤
學位類別:博士
出版日期:2019
主題關鍵詞:科學知識論證行動能力社會性科學議題太陽能電池scientific knowledgeargumentationaction competencesocioscientific issuesolar cell
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:2
本研究旨在設計議題式與行動導向之科學課程,並評估學生於論證活動與後續行動中,科學知識對論證品質與實際行動之關係與角色。
在民主社會中,為使學生在面對問題時能與他人進行溝通與互動並理解他人觀點,在社會性科學議題的脈絡下,學生將可於課程與生活脈絡中整合不同來源之訊息,在合理之理由與證據支持下做出立場的表述。對於人類所面臨之問題,身為未來公民之學生,除了理解並考量問題之複雜性外,還必須能貢獻問題的解決,以實際行動改善人類社會所面臨的問題,進而建構理性社會與永續環境,以達共好的理念。因此,本研究以美國國家科學委員會、新世代科學標準與我國108課綱中所強調與尚未闡明之論證與行動能力為基礎,選擇作為課程設計之依據。
此課程參與者為臺灣中部地區一所完全中學的66位九年級學生,為發展學生的論證能力,以貼近學生生活的社會性科學議題為脈絡,將太陽能電池製程做為教學介入,並以兩人一組的論證模式,在溝通過程中達成共識與做出決定。除了分析教學前、後學生的論證品質、推理模式與科學知識的變化外,並探討三者間之相關性與論證品質的預測變項。再者,以節能減碳為主題,引導學生提出行動方案,使學生能夠在覺知問題的情況下,為改善人類社會與環境的問題而採取行動,並於三年後經由內容分析之方式呈現學生所採取之行動類型,理解行動背後的理由與科學知識對行動之影響。
研究結果顯示,第一個主題中,學生的論證品質、推理模式與科學知識在教學後均有明顯之改變,三者間之相關性在教學也能獲得不同程度的提升,且經由迴歸分析,可得到科學知識與多元推理模式可顯著預測學生於教學後的論證品質。第二個主題中,學生於三年間所採取行動之類型可分為個人化行動、參與式行動、轉型式行動與為未來而準備之行動,其中個人化行動與參與式行動在數量上較具優勢,而科學知識於行動中則作為學生理解問題的方式與解決問題的憧憬與方法,此外,論證與行動間之關係亦可納入教師教學之考量。
經由上述主題的探討,若欲提升學生的論證品質,則需強化學生科學知識的學習與培養多元推理模式的思維,並將社會性科學議題的論證活動與科學課程做結合,此外,如何將學生所習得之科學知識連結人類社會所面臨之問題,以及如何將日新月異之科學與科技發展應用至問題的解決中,都將是學生在採取行動時所需具備之能力。最後,本研究提出議題式行動導向課程之架構,以作為未來教育政策制定者、研究人員與現場教師之教學藍圖。
The purpose of this study aims to design the issue-based and action-oriented science course, and to evaluate the relation and the character of scientific knowledge with argumentation quality and authentic action respectively.
In a democratic society, students should be developed to communicate with others and understand different points of view when confronting the problems. Within the context of the socioscientific issues (SSI), it would benefit students to articulate their standpoints based on reasoned ground by integrating various sources of information. Students, as the future citizens, need to not only consider the complexity of the problem but also contribute to the solution. It means to improve the situation of the human society, and further to construct the living environment with rationality for the common good. Therefore, the course is grounded on the competence development of argumentation and action emphasized and implicitly mentioned by National Research Council, Next Generation Science Standards, and Curriculum Guidelines of 12-Year Basic Education.
The study is conducted in two science classes with the participation of 66 ninth graders from the central area of Taiwan. First, the intervention of the solar cell production and dyadic argumentation in the context of SSI is designed to develop students’ argumentation competence. In addition to analyzing the changes of the argumentation quality, reasoning mode, and scientific knowledge, the relationships of between them and the predictors of argumentation quality are investigated. Second, under the goal of energy saving and carbon reduction, students make the action plan during the course. After three years, by adopting content analysis to represent the categorization of action, the reason behind the action, and the influence of the scientific knowledge are elaborated.
Findings of the study show that the intervention improves students’ argumentation quality, reasoning mode, and scientific knowledge, and the correlations between them also rise. Through regression analysis, the performance on the scientific knowledge and multiple reaonsing modes significantly predict the argumentation quality. Regarding the actions, students take the personal action, participatory action, transforming action, and preparing for future action with the dominance of the first two categories. The utility of the scientific knowledge is the way of comprehending the problem and the means and vision of problem solving. In addition, the relation between argumentation and action could be considered in the design of the instruction.
For advancing students’ argumentation quality, it would be necessary to strengthen the learning of scientific knowledge and to develop thinking from multiple reasoning modes by incorporating argumentation of SSI into science curriculum. In addition, how to link the scientific knowledge to the impending problem and to apply the ever-changing science and technology devemopment to problem solving would be the competence students should hold. Finally, this study proposes a framework for the issue-based and action-oriented course as a blueprint for education policy makers, researchers, and teachers.
中文參考文獻
李松濤、林煥祥、洪振方(2010)。探究式教學對學童科學論證能力影響之探究。科學教育學刊, 18(3),177-203。doi: 10.6173/CJSE.2010.1803.0new window
李品陵、曾榆婷、仲愛、黃雪芬(2016)。依「山」傍水好空氣?-「氣」捕社區汙染源。取自https://www.ntsec.edu.tw/Science-Content.aspx?cat=12947&a=6821&fld=&key=&isd=1&icop=10&p=9&sid=13289。new window
林樹聲、黃柏鴻(2009)。國小六年級學生在社會性科學議題教學中之論證能力研究―不同學業成就學生間之比較。科學教育學刊,17(2),111-133。doi: 10.6173/CJSE.2009.1702.0new window
邱皓政(2010)。量化研究與統計分析(第五版)。臺北市:五南。
許世璋、任孟淵(2014)。 培養環境公民行動的大學環境教育課程―整合理性、情感、與終極關懷的學習模式。科學教育學刊,17(2),211-236。doi: 10.6173/CJSE.2014.2202.05new window
陳仕燁(2012)。電池原理與種類。取自 https://market.cloud.edu.tw/resources/web/1662220。
陳怡君、黃稜洋(2011)。節能減碳-省源($)一度讚。取自 http://www.esdtaiwan.edu.tw/UpLoad/%7B57FCC7B6-F721-4738-A5AF-C515596BB3C4%7D/content.html。
教育部(2003)。國民中小學九年一貫課程綱要―自然與生活科技領域。取自https://www.k12ea.gov.tw/files/97_sid17/%e8%87%aa%e7%84%b6%e8%88%87%e7%94%9f%e6%b4%bb%e7%a7%91%e6%8a%80970917%e5%ae%9a%e7%a8%bf%e5%96%ae%e5%86%8a.pdf。new window
教育部(2017)。十二年國民基本教育課程綱要總綱。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/87/pta_18543_581357_62438.pdf。
教育部(2018)。十二年國民基本教育課程綱要國民中小學暨普通型高級中等學校―自然科學領域。取自https://www.naer.edu.tw/ezfiles/0/1000/attach/63/pta_18538_240851_60502.pdf。
楊景盛、董曜瑜、陳秀溶、王國華(2017)。社會性科學議題情境下論證式探究教學與課程對七年級學生科學學習成就、論證能力和科學素養之影響。科學教育學刊, 25(S),485-500。doi: 10.6173/CJSE.2017.25S.04new window
賴鳳霙、譚鴻仁(2011)。臺中合樸農學市集的形成過程:行動者網絡理論的觀點。地理研究。54, 19-42。doi:10.6234/JGR.2011.54.02new window
謝憶芳、劉湘瑤、陳冠利2013)。環境議題教學提升國小學生科學素養之研究:以太陽能電池議題為例。環境教育研究,10(1),35-64。doi: 10.6555/JEER.10.1.03new window

英文參考文獻
Aguayo, C., & Eames, C. (2017). Promoting community socio-ecological sustainability through technology: A case study from Chile. International Review of Education, 63(6), 871-895. doi:10.1007/s11159-017-9685-7
Alisat, S., & Riemer, M. (2015). The environmental action scale: Development and psychometric evaluation. Journal of Environmental Psychology, 43, 13-23. doi: 10.1016/j.jenvp.2015.05.006
American Association for the Advancement of science (AAAS) (1989) Science for all Americans. A Project 2061 report on literacy goals in science, mathematics, and technology. Washington, DC: AAAS
Ardoin, N. M., Bowers, A. W., Roth, N. W., & Holthuis, N. (2017). Environmental education and K-12 student outcomes: A review and analysis of research. The Journal of Environmental Education, 49(1), 1-17. doi:10.1080/00958964.2017.1366155new window
Arvai, J. L., Campbell, V. E., Baird, A., & Rivers, L. (2004). Teaching students to make better decisions about the environment: Lessons from the decision sciences. The Journal of Environmental Education, 36(1), 33-44. doi:10.3200/joee.36.1.33-44new window
Ausubel, D. P. (1963). The psychology of meaningful verbal learning. NY: Grune and Stratton.
Balgopal, M. M., Wallace, A. M., & Dahlberg, S. (2017). Writing from different cultural contexts: How college students frame an environmental SSI through written arguments. Journal of Research in Science Teaching, 54(2), 195-218. doi:10.1002/tea.21342
Baram-Tsabari, A., & Osborne, J. (2015). Bridging science education and science communication research. Journal of Research in Science Teaching, 52(2), 135-144. doi:10.1002/tea.21202
Basu, S. J., & Barton, A. C. (2007). Developing a sustained interest in science among urban minority youth. Journal of Research in Science Teaching, 44(3), 466-489. doi: 10.1002/tea.20143
Basu, S. J., Calabrese Barton, A., Clairmont, N., & Locke, D. (2009). Developing a framework for critical science agency through case study in a conceptual physics context. Cultural Studies of Science Education, 4(2), 345-371. doi:10.1007/s11422-008-9135-8
Belford, R., & Moore, E. B. (2016). ConfChem Conference on Interactive Visualizations for Chemistry Teaching and Learning: an Introduction. Journal of Chemical Education. 93(6), 1140–1141. doi:10.1021/acs.jchemed.5b00795
Bencze, L., & Carter, L. (2011). Globalizing students acting for the common good. Journal of Research in Science Teaching, 48(6), 648-669. doi:10.1002/tea.20419
Bengtsson, M. (2016). How to plan and perform a qualitative study using content analysis. NursingPlus Open, 2, 8-14. doi: 10.1016/j.npls.2016.01.001
Belland, B. R., Gu, J., Armbrust, S., & Cook, B. (2015). Scaffolding argumentation about water quality: A mixed-method study in a rural middle school. Educational Technology Research and Development, 63(3), 325-353. doi:10.1007/s11423-015-9373-x
Birdsall, S. (2010). Empowering students to act: Learning about, through and from the nature of action. Australian Journal of Environmental Education, 26, 65-84. doi: 10.1017/S0814062600000835
Birmingham, D., & Calabrese Barton, A. (2014). Putting on a green carnival: Youth taking educated action on socioscientific issues. Journal of Research in Science Teaching, 51(3), 286-314. doi: 10.1002/tea.21127
Birmingham, D., Calabrese Barton, A., McDaniel, A., Jones, J., Turner, C., & Rogers, A. (2017). “But the science we do here matters”: Youth‐authored cases of consequential learning. Science Education, 101(5), 818-844. doi: 10.1002/sce.21293
Bodzin, A. (2012). Investigating urban eighth-grade students’ knowledge of energy resources. International Journal of Science Education, 34(8), 1255-1275. doi:10.1080/09500693.2012.661483
Bohnet, I. C., Gooch, M., & Hickey, R. (2010). Young people envision the future of their local area: An explorative study from the wet tropics, Australia. Applied Environmental Education & Communication, 9(3), 185-197.
Bybee, R. & McCrae, B. (2011). Scientific literacy and student attitudes: Perspectives from PISA 2006 science. International Journal of Science Education, 33(1), 7-26. doi:10.1080/09500693.2010.518644new window
Cavagnetto, A. R. (2010). Argument to foster scientific literacy. Review of Educational Research, 80(3), 336-371. doi:10.3102/0034654310376953
Chang, C. Y. (2003). Teaching earth sciences: Should we implement teacher-directed or student-controlled CAI in the secondary classroom? International Journal of Science Education, 25(4), 427-438. doi: 10.1080/09500690210145701
Chawla, L., & Cushing, D. F. (2007). Education for strategic environmental behavior. Environmental Education Research, 13(4), 437-452. doi:10.1080/13504620701581539
Chen, S. Y., & Liu, S. Y. (2018). Reinforcement of scientific literacy through effective argumentation on an energy-related environmental issue. EURASIA Journal of Mathematics, Science and Technology Education, 14(12), em1625. doi: 10.29333/ejmste/95171
Cheong, I. P.-A., Johari, M., Said, H., & Treagust, D. F. (2015). What do you know about alternative energy? Development and use of a diagnostic instrument for upper secondary school science. International Journal of Science Education, 37(2), 210-236. doi:10.1080/09500693.2014.976295
Chien, Y. T., & Chang, C. Y. (2015). Supporting socio-scientific argumentation in the classroom through automatic group formation based on students’ real-time responses. In M. S. Khine (Ed.), Science education in East Asia: Pedagogical innovations and research-informed practices. Netherlands: Springer. doi: 10.1007/978-3-319-16390-1_22
Choi, K., Lee, H., Shin, N., Kim, S.-W., & Krajcik, J. (2011). Re-conceptualization of scientific literacy in South Korea for the 21st century. Journal of Research in Science Teaching, 48(6), 670-697. doi:10.1002/tea.20424
Cohen, J. (1988) Statistical power analysis for the behavioral sciences, 2nd edition. NJ: Lawrence Erlbaum
Creswell, J. (2007). Qualitative inquiry & research design: Choosing among five approaches. CA: Sage Publications.
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
Christenson, N., Rundgren, S. N. C., & Zeidler, D. L. (2014). The relationship of discipline background to upper secondary students’ argumentation on socioscientific issues. Research in Science Education, 44(4), 581-601. doi: 10.1007/s11165-013-9394-6
Dawson, V., & Carson, K. (2016). Using climate change scenarios to assess high school students’ argumentation skills. Research in Science & Technological Education, 35(1), 1-16. doi:10.1080/02635143.2016.1174932new window
Dawson, V., & Venville, G. J. (2009). High‐school students’ informal reasoning and argumentation about biotechnology: An indicator of scientific literacy? International Journal of Science Education, 31(11), 1421-1445. doi:10.1080/09500690801992870
DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582-601. doi:10.1002/1098-2736(200008)37:6<582::AID-TEA5>3.0.CO;2-L
Dervić, D., Glamočić, D. S., Gazibegović-Busuladžić, A., & Mešić, V. (2018). Teaching physics with simulations: Teacher-centered versus student-centered approaches. Journal of Baltic Science Education, 17(2), 288-299.
Dillon, J., Stevenson, R. B., & Wals, A. E. (2016). Introduction to the special section Moving from citizen to civic science to address wicked conservation problems. Conservation Biology, 30(3), 450-455. doi: 0.1111/cobi.12689
Dittmer, L., Mugagga, F., Metternich, A., Schweizer-Ries, P., Asiimwe, G., & Riemer, M. (2018). “We can keep the fire burning”: Building action competence through environmental justice education in Uganda and Germany. Local Environment, 23(2), 144-157. doi:10.1080/13549839.2017.1391188
Drewes, A., Henderson, J., & Mouza, C. (2017). Professional development design considerations in climate change education: teacher enactment and student learning. International Journal of Science Education, 40(1), 67-89. doi:10.1080/09500693.2017.1397798new window
Eisenhart, M., Finkel, E., & Marion, S. F. (1996). Creating the conditions for scientific literacy: A re-examination. American Educational Research Journal, 33(2), 261-295.
Elo, S., & Kyngas, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107-115. doi:10.1111/j.1365-2648.2007.04569.xnew window
Epstein, S. (1996). Impure science: AIDS, activism, and the politics of knowledge. Berkeley: University of California Press.
Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's Argument Pattern for studying science discourse. Science Education, 88(6), 915-933. doi:10.1002/sce.20012
Ernst, J., Blood, N., & Beery, T. (2017). Environmental action and student environmental leaders: Exploring the influence of environmental attitudes, locus of control, and sense of personal responsibility. Environmental Education Research, 23(2), 149-175. doi:10.1080/13504622.2015.1068278
Feinstein, N. (2010). Salvaging science literacy. Science education, 95(1), 168-185. doi: 10.1002/sce.20414new window
Fontes, P. J. (2004). Action competence as an integrating objective for environmental education. Canadian Journal of Environmental Education, 9(1), 148-162.new window
Fives, H., Huebner, W., Birnbaum, A. S., & Nicolich, M. (2014). Developing a measure of scientific literacy for middle school students. Science Education, 98(4), 549-580. doi:10.1002/sce.21115
Glasson, G. E. (1989). The effects of hands‐on and teacher demonstration laboratory methods on science achievement in relation to reasoning ability and prior knowledge. Journal of Research in Science Teaching, 26(2), 121-131. doi: 10.1002/tea.3660260204
Gottlieb, D., Vigoda-Gadot, E., & Haim, A. (2013). Encouraging ecological behaviors among students by using the ecological footprint as an educational tool: A quasi-experimental design in a public high school in the city of Haifa. Environmental Education Research, 19(6), 844-863. doi:10.1080/13504622.2013.768602
Halpern, D. (2014). Thought and Knowledge. NY: Psychology Press.
Helm, D. (2017). Burn out: The endgame for fossil fuels. New Haven: Yale University Press.
Henderson, J. B., McNeill, K. L., González-Howard, M., Close, K., & Evans, M. (2018). Key challenges and future directions for educational research on scientific argumentation. Journal of Research in Science Teaching, 55(1), 5-18. doi:10.1002/tea.21412new window
Hodson, D. (2003). Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645-670. doi:10.1080/09500690305021
Hodson, D. (2010). Science education as a call to action. Canadian Journal of Science, Mathematics and Technology Education, 10(3), 197-206. doi:10.1080/14926156.2010.504478
Hodson, D. (2017). Foreword: The significance of STEPWISE for fostering life-long sociopolitical activism. In L. Bencze (Ed.), Science and technology education promoting wellbeing for individuals, societies and environments (pp. 3-18). Cham: Springer. doi:10.1007/978-3-319-55505-8_1
Hsu, P. S., Van Dyke, M., Chen, Y., & Smith, T. J. (2016). A cross-cultural study of the effect of a graph-oriented computer-assisted project-based learning environment on middle school students' science knowledge and argumentation skills. Journal of Computer Assisted Learning, 32(1), 51-76. doi:10.1111/jcal.12118new window
Hungerford, H. R., & Volk, T. L. (1990). Changing learner behavior through environmental education. The Journal of Environmental Education, 21(3), 8-21. doi:10.1080/00958964.1990.10753743
Hurd, P. D. (1958). Science literacy: Its meaning for American schools. Educational leadership, 16(1), 13-16.new window
Jensen, B. B. (2000). Health knowledge and health education in the democratic health-promoting school. Health Education, 100(4), 146-154. doi:10.1108/09654280010330900
Jensen, B. B. (2002). Knowledge, action and pro-environmental behaviour. Environmental Education Research, 8(3), 325-334. doi:10.1080/13504620220145474
Jensen, B. B. (2004). Environmental and health education viewed from an action-oriented perspective: A case from Denmark. Journal of Curriculum Studies, 36(4), 405-425. doi:10.1080/0022027032000167235
Jensen, B. B., & Schnack, K. (1997). The action competence approach in environmental education. Environmental Education Research, 3(2), 163-178. doi:10.1080/1350462970030205
Jensen, B. B., & Schnack, K. (2006). The action competence approach in environmental education: Reprinted from Environmental Education Research (1997) 3 (2), pp. 163–178. Environmental Education Research, 12(3-4), 471-486. doi:10.1080/13504620600943053
Jin, H., Mehl, C. E., & Lan, D. H. (2015). Developing an analytical framework for argumentation on energy consumption issues. Journal of Research in Science Teaching, 52(8), 1132-1162. doi:10.1002/tea.21237
Johnson, L., Adams Becker, S., Estrada, V., and Freeman, A. (2015). NMC Horizon Report: 2015 Higher Education Edition. Austin, Texas: The New Media Consortium.
Johnson, L., Brown, S., Cummins, M. & Estrada, V. (2012). The Technology Outlook for STEM+ Education 2012-2017: An NMC Horizon Report Sector Analysis. Austin, Texas: The New Media Consortium. Retrieved from https://www.learntechlib.org/p/48971/
Jönsson, A. (2016). Student performance on argumentation task in the Swedish National Assessment in Science. International Journal of Science Education, 38(11), 1825-1840. doi:10.1080/09500693.2016.1218567
Karpudewan, M., & Roth, W. M. (2016). Changes in primary students’ informal reasoning during an environment-related curriculum on socio-scientific issues. International Journal of Science and Mathematics Education, 16(3), 401-419. doi:10.1007/s10763-016-9787-x
Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013). Argumentation in the chemistry laboratory: Inquiry and confirmatory experiments. Research in Science Education, 43(1), 317-345. doi: 10.1007/s11165-011-9267-9new window
Knowles, R. T., & Castro, A. J. (2019). The implications of ideology on teachers’ beliefs regarding civic education. Teaching and Teacher Education, 77, 226-239. doi: 10.1016/j.tate.2018.10.009
Kollmuss, A., & Agyeman, J. (2002). Mind the Gap: Why do people act environmentally and what are the barriers to pro-environmental behavior? Environmental Education Research, 8(3), 239-260. doi:10.1080/13504620220145401
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85, 291–310. doi: 10.1002/sce.1011
Kuhn, D. (1991). The skills of argument. Cambridge, UK: Cambridge University Press. doi:10.1017/CBO9780511571350
Kuhn, D., Shaw, V., & Felton, M. (1997). Effects of dyadic interaction on argumentive reasoning. Cognition and Instruction, 15(3), 287-315. doi:10.1207/s1532690xci1503_1
Kuhn, D., Zillmer, N., Crowell, A., & Zavala, J. (2013). Developing norms of argumentation: Metacognitive, epistemological, and social dimensions of developing argumentive competence. Cognition and Instruction, 31(4), 456-496. doi:10.1080/07370008.2013.830618
Latour, B. (2005). Reassembling the social: An introduction to actor-network-theory. Oxford, UK: Oxford University Press.
Laugksch, R. C. (2000). Scientific literacy: A conceptual overview. Science Education, 84(1), 71-94. doi:10.1002/(SICI)1098-237X(200001)84:1<71::AID-SCE6>3.0.CO;2-Cnew window
Lee, H., Yoo, J., Choi, K., Kim, S.-W., Krajcik, J., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific issues as a vehicle for promoting character and values for global citizens. International Journal of Science Education, 35(12), 2079-2113. doi:10.1080/09500693.2012.749546
Lee, Y. C., & Grace, M. (2012). Students' reasoning and decision making about a socioscientific issue: A cross-context comparison. Science Education, 96(5), 787-807. doi:10.1002/sce.21021
Lester, B. T., Ma, L., Lee, O., & Lambert, J. (2006). Social Activism in Elementary Science Education: A science, technology, and society approach to teach global warming. International Journal of Science Education, 28(4), 315-339. doi:10.1080/09500690500240100
Levine Rose, S., & Calabrese Barton, A. (2012). Should great lakes city build a new power plant? How youth navigate socioscientific issues. Journal of Research in Science Teaching, 49(5), 541-567. doi:10.1002/tea.21017
Lewis, N. S. (2016). Research opportunities to advance solar energy utilization. Science, 351(6271), aad1920. doi: 10.1126/science.aad1920
Lewis, J., & Leach, J. (2006). Discussion of Socio‐scientific Issues: The role of science knowledge. International Journal of Science Education, 28(11), 1267-1287. doi:10.1080/09500690500439348
Lin, S. S. (2014). Science and non-science undergraduate students’ critical thinking and argumentation performance in reading a science news report. International Journal of Science & Mathematics Education, 12(5), 1023-1046. doi:10.1007/s10763-013-9451-7
Lin, S. S., & Mintzes, J. J. (2010). Learning argumentation skills through instruction in socioscientific issues: The effect of ability level. International Journal of Science and Mathematics Education, 8(6), 993-1017. doi: 10.1007/s10763-010-9215-6
McCurdy, R. C. (1958). Towards a population literate in science. The Science Teacher, 25, 366–368.
McNeill, K. L., & Vaughn, M. H. (2012). Urban high school students’ critical science agency: Conceptual understandings and environmental actions around climate change. Research in Science Education, 42(2), 373-399. doi:10.1007/s11165-010-9202-5
Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and instruction, 14(2), 139-178. doi: 10.1207/s1532690xci1402_1
Millar, R., & Osborne, J. (Eds.). (1998). Beyond 2000: Science education for the future. London: King's College London School of Education.
Mogensen, F., & Schnack, K. (2010). The action competence approach and the 'new' discourses of education for sustainable development, competence and quality criteria. Environmental Education Research, 16(1), 59-74. doi:10.1080/13504620903504032new window
Mun, K., Shin, N., Lee, H., Kim, S.-W., Choi, K., Choi, S.-Y., & Krajcik, J. S. (2015). Korean Secondary Students’ Perception of Scientific Literacy as Global Citizens: Using Global Scientific Literacy Questionnaire. International Journal of Science Education, 37(11), 1739-1766. doi:10.1080/09500693.2015.1045956
National Resource Council (NRC). (2012). A framework for K-12 science education practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Board on science education, division of behavioral and social sciences and education.Washington, DC: The National Academies Press.
NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.
Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87(2), 224-240. doi:10.1002/sce.10066
Nussbaumer, D. (2012). An overview of cultural historical activity theory (CHAT) use in classroom research 2000 to 2009. Educational Review, 64(1), 37-55. doi:10.1080/00131911.2011.553947new window
OECD (2016). PISA 2015 Results (Volume I): Excellence and equity in education, Paris: OECD Publishing. doi:10.1787/9789264266490-en
OECD (1998). Instrument design: A framework for assessing scientific literacy. Report of Project Managers Meeting. Arnhem: Programme for International Student Assessment.
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463-466. doi:10.1126/science.1183944
Osborne, J., Donovan, B. M., Henderson, J. B., MacPherson, A. C., & Wild, A. (2016). Arguing from evidence in middle school science: 24 activities for productive talk and deeper learning. CA: Corwin Press.
Osborne, J., Erduran, S., Simon, S., & Monk, M. (2001). Enhancing the quality of argument in school science. School science review, 82(301), 63-70.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020. doi:10.1002/tea.20035
Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students' argumentation in decision-making on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21(7), 745-754. doi: 10.1080/095006999290408
Pedretti, E., & Nazir, J. (2011). Currents in STSE education: Mapping a complex field, 40 years on. Science Education, 95(4), 601-626. doi: 10.1002/sce.20435
Pella, M. O., O'hearn, G. T., & Gale, C. W. (1966). Referents to scientific literacy. Journal of Research in Science Teaching, 4(3), 199-208. doi: 10.1002/tea.3660040317
Plakitsi, K. (2013). Activity theory in formal and informal science education. In K. Plakitsi (Ed.), Activity Theory in Formal and Informal Science Education (pp. 1-15). Rotterdam: Sense. doi:10.1007/978-94-6091-317-4_1
Ramjewan, N. T., Zoras, B., & Bencze, L. (2017). Giving meaning to STSE issues through student-led action research: An actor-network theory account of STEPWISE in action. In L. Bencze (Ed.), Science and Technology Education Promoting Wellbeing for Individuals, Societies and Environments (pp. 277-293). Cham: Springer. doi:10.1007/978-3-319-55505-8_12
Reichert, F., & Print, M. (2018). Civic participation of high school students: The effect of civic learning in school. Educational Review, 70(3), 318-341. doi: 10.1080/00131911.2017.1316239
Riemer, M., Voorhees, C., Dittmer, L., Alisat, S., Alam, N., Sayal, R., Bidisha, S. H., De Souza, A., Lynes, J., Metternich, A., Mugagga, F., Schweizer-Ries, P. (2016). The youth leading environmental change project: A mixed-method longitudinal study across six countries. Ecopsychology, 8(3), 174-187. doi:10.1089/eco.2016.0025
Roberts, D. A. (2007). Scientific literacy/science literacy. In S.K. Abell & N.G. Lederman (Eds.), Handbook of research on science education (pp. 729 – 780). Mahwah, NJ: Erlbaum.
Rockefeller Brothers Fund. (1958). The pursuit of excellence: Education and the future of America. In Prospect for America: Report number V of the Rockefeller Panel reports. Garden City, NY: Doubleday.
Roth, W. M., & Lee, S. (2004). Science education as/for participation in the community. Science Education, 88(2), 263-291. doi:10.1002/sce.10113
Rudolph, J. L., & Horibe, S. (2016). What do we mean by science education for civic engagement? Journal of Research in Science Teaching, 53(6), 805-820. doi:10.1002/tea.21303
Rudsberg, K., & Öhman, J. (2015). The role of knowledge in participatory and pluralistic approaches to ESE. Environmental Education Research, 21(7), 955-974. doi:10.1080/13504622.2014.971717
Sadler T. D. (2011). Situating socio-scientific issues in classrooms as a means of achieving goals of science education. In T. D. Sadler (Ed.), Socio-scientific issues in the classroom. Contemporary Trends and Issues in Science Education (pp. 1-9). Dordrecht: Springer. doi: 10.1007/978-94-007-1159-4_1
Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: The effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463-1488. doi:10.1080/09500690600708717
Sadler, T. D., & Fowler, S. R. (2006). A threshold model of content knowledge transfer for socioscientific argumentation. Science Education, 90(6), 986-1004. doi:10.1002/sce.20165
Sadler, T. D., & Murakami, C. D. (2014). Socio-scientific Issues based Teaching and Learning: Hydrofracturing as an Illustrative context of a Framework for Implementation and Research. Revista Brasileira de Pesquisa em Educação em Ciências, 14(2), 331-342.
Sadler, T. D., & Zeidler, D. L. (2004). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89(1), 71-93. doi:10.1002/sce.20023new window
Santos, W. L. P. D. (2009). Scientific literacy: A Freirean perspective as a radical view of humanistic science education. Science Education, 93(2), 361-382. doi:10.1002/sce.20301
Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4-13 doi: 10.3102/0013189X027002004.
Shamos, M. H. (1996). The myth of scientific literacy. Liberal Education, 82(3), 44-49.
Shen, B. S. (1975). Science literacy and the public understanding of science. In S.B. Day (Ed.), Communication of scientific information (pp. 44-52). NY: Karger Publishers. doi:10.1159/000398072
Simovska, V., & Jensen, B. B. (2008). On‐line learning environments and participatory health education: Teachers’ reflections. Journal of Curriculum Studies, 40(5), 651-669. doi:10.1080/00220270701648092
Skamp, K., Boyes, E., & Stanisstreet, M. (2013). Beliefs and willingness to act about global warming: Where to focus science pedagogy? Science Education, 97(2), 191-217. doi:10.1002/sce.21050
Stern, P. C. (2000). New environmental theories: Toward a coherent theory of environmentally significant behavior. Journal of social issues, 56(3), 407-424. doi: 10.1111/0022-4537.00175
Stevenson, R. B. (2007). Schooling and environmental education: Contradictions in purpose and practice. Environmental education research, 13(2), 139-153. doi: 10.1080/13504620701295726
Stohr-Hunt, P. M. (1996). An analysis of frequency of hands-on experience and science achievement. Journal of Research in Science Teaching, 33(1), 101-109. doi:10.1002/(SICI)1098-2736(199601)33:1<101::AID-TEA6>3.0.CO;2-Znew window
Schusler, T. M., Krasny, M. E., Peters, S. J., & Decker, D. J. (2009). Developing citizens and communities through youth environmental action. Environmental Education Research, 15(1), 111-127. doi: 10.1080/13504620802710581new window
Swarat, S., Ortony, A., & Revelle, W. (2012). Activity matters: Understanding student interest in school science. Journal of Research in Science Teaching, 49(4), 515-537. doi:10.1002/tea.21010
Tilbury, D. (1995). Environmental education for sustainability: Defining the new focus of environmental education in the 1990s. Environmental Education Research, 1(2), 195-212. doi:10.1080/1350462950010206new window
Toulmin, S.E. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.
Toulmin, S.E. (2003). The uses of argument (Updated ed.). Cambridge, UK: Cambridge University Press.
UN. (1972). Report of the United Nations conference on the human environment. Retrieved from http://www.un-documents.net/aconf48-14r1.pdf
UN. (1987). Our common future: Report of the World Commission on Environment and Development. NY: Oxford University Press.
UNESCO. (2017). Education for sustainable development goals. Retrieved from http://unesdoc.unesco.org/images/0024/002474/247444e.pdf
Uzzell, D. (1999). Education for environmental action in the community: New roles and relationships. Cambridge Journal of Education, 29(3), 397-413. doi:10.1080/0305764990290309
van Eijck, M., & Roth, W. M. (2007). Rethinking the role of information technology-based research tools in students’ development of scientific literacy. Journal of Science Education and Technology, 16(3), 225-238. doi: 10.1007/s10956-007-9045-7
van Eijck, M., & Roth, W. M. (2010). Theorizing scientific literacy in the wild. Educational Research Review, 5(2), 184-194. doi:10.1016/j.edurev.2010.03.002
von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131. doi:10.1002/tea.20213new window
Varela-Losada, M., Vega-Marcote, P., Pérez-Rodríguez, U., & Álvarez-Lires, M. (2016). Going to action? A literature review on educational proposals in formal Environmental Education. Environmental Education Research, 22(3), 390-421. doi:10.1080/13504622.2015.1101751
Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students' argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47(8), 952-977. doi:10.1002/tea.20358
Vesterinen, V. M., Manassero-Mas, M. A., & Vázquez-Alonso, Á. (2014). History, philosophy, and sociology of science and science-technology-society traditions in science education: Continuities and discontinuities. In M. R. Matthews (Ed.), International handbook of research in history, philosophy and science teaching (pp. 1895-1925). Dordrecht: Springer. doi: 10.1007/978-94-007-7654-8_58
Vesterinen, V.-M., Tolppanen, S., & Aksela, M. (2016). Toward citizenship science education: What students do to make the world a better place? International Journal of Science Education, 38(1), 30-50. doi:10.1080/09500693.2015.1125035new window
Voss, J. F., & Means, M. L. (1991). Learning to reason via instruction in argumentation. Learning and instruction, 1(4), 337-350. doi: 10.1016/0959-4752(91)90013-Xnew window
Wake, S. J., & Eames, C. (2013). Developing an "ecology of learning" within a school sustainability co-design project with children in New Zealand. Local Environment, 18(3), 305-322. doi:10.1080/13549839.2012.748723
Wals, A. E., Brody, M., Dillon, J., & Stevenson, R. B. (2014). Convergence between science and environmental education. Science, 344(6184), 583-584. doi: 0.1126/science.1250515
Westheimer, J. (2015). What kind of citizen?: Educating our children for the common good. NY: Teachers College Press.
Westheimer, J., & Kahne, J. (2004). What kind of citizen? The politics of educating for democracy. American Educational Research Journal, 41(2), 237-269. doi: 10.3102/00028312041002237
Whitmarsh, L., Seyfang, G., & O’Neill, S. (2011). Public engagement with carbon and climate change: To what extent is the public ‘carbon capable’? Global Environmental Change, 21(1), 56-65. doi:10.1016/j.gloenvcha.2010.07.011new window
Wu, Y. T., & Tsai, C. C. (2007). High school students’ informal reasoning on a socio‐scientific issue: Qualitative and quantitative analyses. International Journal of Science Education, 29(9), 1163-1187. doi:10.1080/09500690601083375
Wu, Y. T., & Tsai, C. C. (2011). High school students’ informal reasoning regarding a socio‐scientific issue, with relation to scientific epistemological beliefs and cognitive structures. International Journal of Science Education, 33(3), 371-400. doi:10.1080/09500690903505661
Yacoubian, H. A. (2018). Scientific literacy for democratic decision-making. International Journal of Science Education, 40(3), 308-327. doi: 10.1080/09500693.2017.1420266
Yeh, S. C., Huang, J. Y., & Yu, H. C. (2017). Analysis of energy literacy and misconceptions of junior high students in Taiwan. Sustainability, 9(3), 423. doi:10.3390/su9030423
Zeidler, D. L., Osborne, J., Erduran, S., Simon, S., & Monk, M. (2003). The role of argument during discourse about socioscientific issues. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp. 97-116). Dordrech: Springer.
Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis. Theory, research, and practice. In N. G. Lederman & S. K. Abell (Eds.), Handbook of research on science education (2 ed.,Vol. 2, pp.697-726).
Zeidler, D. L., Walker, K. A., Ackett, W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343-367. doi:10.1002/sce.10025
Zohar, A., & Dori, Y. J. (2003). Higher order thinking skills and low-achieving students: Are they mutually exclusive?. The Journal of the Learning Sciences, 12(2), 145-181. doi:10.1207/s15327809jls1202_1
Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62. doi:10.1002/tea.10008new window
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE