:::

詳目顯示

回上一頁
題名:發展與實施「自然科學探究與實作」課程之研究
作者:張珮珊
作者(外文):Chang,Pei-Shan
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:温媺純
學位類別:博士
出版日期:2018
主題關鍵詞:科學探究與實作課程科學寫作科學論證酵素Scientific Inquiry and Practice CurriculumScience WritingScientific ArgumentationEnzyme
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:7
協助學生進行科學探究,自實作中獲得科學知識與技能,培養其自發的實務參與、互動協商之核心素養是重要科學教育目標。本研究目的即是發展一門能於未來高中教學場域實施的「自然科學探究與實作」課程,因此,本研究採用強調真實教育情境、重視教學實施省思、且具循環修正歷程的「設計研究法」來架構本研究;在課程發展與實施方面,研究者基於十二年國教自然領綱草案所強調的學習內容與學習表現,藉「重理解的課程設計原則(逆向設計)」發展本「酵素科學探究與實作」課程,期望學生能藉由各種探究實作經驗來探索科學知識的發展,進而建構基於證據的科學論證。是以在課程實施階段搭配基於論證之探究教學法─啟發式科學寫作(Science Writing Heuristics, SWH)來協助學生整合科學探究、論證及寫作實務;此外,研究者亦嘗試結合前人發表及己身發展的評量工具,以多元評量策略來評估參與學生之科學探究能力(含科學論證)、科學本質、科學概念等學習表現,瞭解其科學核心素養的發展情形,進而評鑑此課程之效益、闡述遭遇的問題、並提出相應之改善策略來逐步循環修正此課程。研究一為第一次課程試行,採科學營隊方式,邀請中部二所完全中學共計62位學生參與本「酵素科學探究與實作」課程;研究二的課程試行則邀請研究者任教學校之18位學生參與;而在第三次課程試行時,研究者基於學年常規課程規劃來進行本課程的再設計,並邀請17位學生共同參與本課程的發展。綜合三次課程試行的研究結果發現,本「酵素科學探究與實作」課程確實有助於發展學生的科學探究能力(如科學論證、計劃與執行實驗等),促進學生科學本質(如觀察的本質、科學方法、主觀性、科學知識的確認等)與科學概念的理解;不過,學生的論證寫作能力存在顯著的個體差異,而預測論證寫作品質之關鍵向度也因探究任務而有所不同;此外,基於設計研究法之分析、設計、評鑑的反覆循環歷程,研究者嘗試歸納以逆向設計發展之「自然科學探究與實作」課程的設計原則,並提出相關教學與研究建議以供教育工作者參考。
To assist students learn the scientific knowledge and skills, and to develop their scientific literacy such as spontaneous practical participation and negotiation ability from the science practices are the major goals of science education. The purpose of this study was to develop a “Scientific Inquiry and Practice” Curriculum that can be implemented in the high school. The design research method, which emphasizes teaching reflection on real contexts and the iterative cycles of design, implementation, and formative evaluation, was conducted as the basis of this study. In the curriculum development and implementation, the researcher developed an “Enzyme Scientific Inquiry and Practice” curriculum via the Understanding by Design (Backward design) to align the goals of Grade 1–12 Curriculum Guidelines for Nature Science Discipline. We expected that students could explore the scientific knowledge by their practice experiences and further construct the scientific argumentation based on the evidences. To achieve these goals, the Science Writing Heuristics (SWH) was employed to help students integrate inquiry, argumentation, and writing practice. In addition, the authentic assessments from author and previous studies were used to evaluate the students’ performance such as inquiry ability (including argumentation), scientific concepts, and nature of science to estimate the effectiveness of this curriculum. Two science camps, which included 62 and 18 high school students from central Taiwan respectively, were conducted for the first and second trial implementation. Another group of 17 students were enrolled to develop a regular year curriculum in the third trial implementation. According to the results, this “Enzyme Scientific Inquiry and Practice” curriculum could help student not only develop inquiry ability, including argumentation, planning and carrying out investigations, but also promote the understanding of nature of science and scientific concepts. However, there were distinct differences between individuals’ argumentative performances. Furthermore, the predictive components of argumentative writing quality depend on the inquiry task. Last, we inducted the design principles of “Scientific Inquiry and Practice” curriculum and provided teaching and research suggestions according to our results for the interested educators.
中文部分
王佳琪、何曉琪、鄭英耀(2014)。科學創造性問題解決測驗之發展。測驗學刊,61(3),337-360。
王靜如、周金燕、蔡瑞芬(2006)。科學本質與科學探究。屏東教大科學教育,23,3-17。
佘曉清(2016,12月)。PISA 2015。第三十二屆科學教育國際研討會發表之論文,國立彰化師範大學。
佘曉清、林煥祥編(2017)。PISA 2015臺灣學生的表現。臺北市:心理。
李文富(2012)。從大學的發展趨勢探析十二年國民基本教育普通高中階段的課程改革。課程研究,8(2),53-75。
李明昆、洪振方(2010)。九年級學生對探究性科學問題提問之研究。臺北市立教育大學學報,41(2),111-148。
吳百興、張耀云、吳心楷(2010)。科學探究活動中的科學推理。科學教育研究與發展季刊,56,53-74。
吳百興(2018)。建構高中學生探究能力之影響模式:從學習經驗、科學好奇心以及科學投入的因素進行探討。國立臺灣師範大學科學教育研究所博士論文,未出版,臺北市。
何宗穎、王敏男、謝佩妤、郭幸宜、趙大衛、黃台珠(2013)。大學普通生物學實驗課程應用探究鷹架自我評估策略對學生探究能力表現之影響。科學教育學刊,21(4),401-429。
吳坤璋、黃台珠、吳裕益(2005)。影響中小學學生科學學習成就的因素之比較研究。教育心理學報,37(2), 147-171。
邱明富、高慧蓮(2006)。科學史融入教學對國小學童科學本質觀影響之探究。科學教育學刊,14(2),163-187。
邱美虹(2016年1月)。科學模型與建模:科學模型、科學建模與建模能力。臺灣化學教育,11。取自http://chemed.chemistry.org.tw/?p=13898
林樹聲、黃柏鴻(2009)。國小六年級學生在社會性科學議題教學中之論證能力研究-不同學業成就學生間之比較。科學教育學刊,17(2),111-133。
林陳涌(1996)。「了解科學本質量表」之發展與效化。科學教育學刊,4(1),1-58。
林陳涌、鄭榮輝、張永達(2009)。融入科學史教學對高中學生的科學本質觀、對科學的態度以及學習成就的影響。科學教育學刊,17(2),93-109。
林志能、陳玲君、洪振方(2010)。高一學生多變因因果推理與論證能力之相關研究。教育實踐與研究,23(2),1-36。
林宗進、林樹聲、陳映均(2010)。大學生對基因改造作物議題的認知與論證能力之研究。科學教育學刊,18(3),229-252。
林淑梤、葉辰楨、張文華、陳素芬(2012)。運用明示和暗示科學本質文本對七年級學生學習演化單元的效益。科學教育學刊,20(4),367-392。

林煥祥、洪振方、佘曉清、李松濤、李暉、秦爾聰等(2016,12月)。PISA 2015。第三十二屆科學教育國際研討會發表之論文,國立彰化師範大學。
洪逸文、湯宜佩(2016)。高中特色課程的開發與實施:以論證課程為例。課程研究,11(1),23-57。
翁秀玉、段曉林(1997)。科學本質在科學教育上的啟示與作法。科學教育月刊,201,2-15。
祝新華(1993)。語文能力發展心理學。杭州:杭州大學出版社。
祝新華(2001)。從學生作文心理角度開展作文教學改革。課程、教材、教法,3,20-24。
許瑛玿、莊福泰、林祖強(2012)。解析設計研究法的架構與實施:以科學教育研究為例。教育科學研究期刊,57(1),1-27。
張珮珊、賴吉永、溫媺純(2017)。科學探究與實作課程的發展、實施與評量:以實驗室中的科學論證為核心之研究。科學教育學刊,25(4),355-389。
黃明玉(2004)。成人學習者自我導向學習傾向、班級學習氣氛與學習滿意度之研究(未出版之碩士論文)。國立高雄師範大學,高雄市。
教育部(2000)。國民中小學九年一貫課程總綱。臺北市:教育部。
教育部(2008)。97年度國民中小學九年一貫課程綱要。臺北市:教育部。
教育部(2009)。普通高級中學課程綱要。臺北市:教育部。
教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:教育部。
國家教育研究院(2016)。十二年國民基本教育課程綱要自然科學領域(草案)。臺北市:國家教育研究院。
陳育霖(2016)。教育現場為什麼需要探究與實作課程?科學研習月刊,56(6),19-27。
陳華傑(2016)。教師社群開發探究與實作課程的經驗分享。科學研習月刊,56(6),28-36。
蔡俊彥、黃台珠(2008)。學童論證能力及科學本質觀之研究。屏東教育大學學報,28,85-116。
蔡佩穎、張文華、林陳涌、張惠博(2013)。不同性別七年級學生論證科學新聞之學習效益。科學教育學刊,21(4),455-481。
劉湘瑤(2016)。科學探究的教學與評量。科學研習月刊,56(6),5-11。
鄭志鵬、吳月鈴(2017)。自然新領綱與科學新教師。教育脈動,(10),1-7。
謝州恩、劉湘瑤(2013)。省思九年一貫自然與生活科技課程綱要中的科學本質內涵。科學教育研究與發展,66,53-76。
翁穎哲、譚克平(2008)。設計研究法簡介及其在教育研究的應用範例。科學教育月刊,307,15-30。
蘇衍丞、林樹聲(2012)。在社會性科學議題情境下應用鷹架教學提升國小六年級學生論證能力。科學教育學刊,20(4),343-366。

顧炳宏、陳瓊森、溫媺純(2011)。從學生的表現與觀點探討引導發現式教學作為發展探究教學之折衷方案角色的成效─以密度概念為例。科學教育學刊,19(3),257-282。

英文部分
American Association for the Advancement of Science. (1989). Science for All Americans: A project 2061 report on literacy goals in science, mathematics, and technology. Washington, DC: American Association for the Advancement of Science Press.
American Association for the Advancement of Science. (2001). Atlas of Science Literacy (Vol. 1). Washington, DC: American Association for the Advancement of Science Press.
American Association for the Advancement of Science. (2007). Atlas of Science Literacy (Vol. 2). Washington, DC: American Association for the Advancement of Science Press.
Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers' conceptions of nature of science: A critical review of the literature. International journal of science education, 22(7), 665-701.
Abd‐El‐Khalick, F., Waters, M., & Le, A. P. (2008). Representations of nature of science in high school chemistry textbooks over the past four decades. Journal of research in science teaching, 45(7), 835-855.
Akerson, V. L., Hanson, D. L., & Cullen, T. A. (2007). The influence of guided inquiry and explicit instruction on K-6 teachers’ views of nature of science. Journal of Science Teacher Education, 18(5), 751-772.
Akkus, R., Gunel, M., & Hand, B. (2007). Comparing an inquiry‐based approach known as the Science Writing Heuristic to traditional science teaching practices: Are there differences? International Journal of Science Education, 29(14), 1745-1765.
Backus, L. (2005). A year without procedures. The Science Teacher, 72(7), 54-58.
Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: Designing for learning from the web with KIE. International Journal of Science Education, 22(8), 797-817.
Ben‐David, A., & Zohar, A. (2009). Contribution of meta‐strategic knowledge to scientific inquiry learning. International Journal of Science Education, 31(12), 1657-1682.
Berland, L. K., & Reiser, B. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55.
Berland, L. K., & Hammer, D. (2012). Framing for scientific argumentation. Journal of Research in Science Teaching, 49(1), 68-94.
Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions. Journal of the Learning Sciences, 2(2), 141-178.
Burgin, S. R., & Sadler, T. D. (2016). Learning nature of science concepts through a research apprenticeship program: A comparative study of three approaches. Journal of Research in Science Teaching, 53(1), 31-59.
Champagne, A. B., & Kouba, V. L. (2005). Writing to inquire: Written products as performance measures. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Assessing science understanding: A human constructivist view (pp. 223-247). Burlington, MA: Elsevier Academic Press.
Carey, R. L., & Stauss, N. G. (1968). An analysis of the understanding of the nature of science by prospective secondary science teachers. Science Education, 52(4), 358-363.
Cavagnetto, A. (2010). Argument to foster scientific literacy: A review of argument interventions in K-12 science contexts. Review of Educational Research, 80(3), 336-371.
Cavagnetto, A., & Hand, B. (2012). The importance of embedding argument within science classrooms. In M. S. Khine (Ed.), Perspectives on Scientific Argumentation (pp. 39-53). Dordrecht, The Netherlands: Springer.
Chang, P. S., Lai, C. Y., & Wen, M. C. (2014).The development of an inquiry-based laboratory-oriented enzyme curriculum and the effect on students’ view of the nature of science. Paper presented at the 2014 Second IHPST Asian Regional Conference. Taipei, Taiwan.
Chen, S. (2006). Development of an instrument to assess views on nature of science and attitudes toward teaching science. Science Education, 90(5), 803-819.
Chen, Y. C., & Steenhoek, J. (2014). Arguing like a scientist: Engaging students in core scientific practices. The American Biology Teacher, 76(4), 231-237.
Chen, Y.-C., Hand, B., & Park, S. (2016). Examining elementary students’ development of oral and written argumentation practices through argument-based inquiry. Science & Education, 25 (3-4), 277-320.
Chin, C., & Osborne, J. (2008). Students' questions: A potential resource for teaching and learning science. Studies in science education, 44(1), 1-39.
Choi, A., Notebaert, A., Diaz, J., & Hand, B. (2010). Examining arguments generated by year 5, 7, and 10 students in science classrooms. Research in Science Education, 40(2), 149-169.
Choi, A. (2010). Argument structure in the Science Writing Heuristic (SWH) approach. Journal of Korean Science Education, 30(3), 323-336.
Choi, A. (2012). Using the writing template provided by the Science Writing Heuristic (SWH) approach for quality arguments. Journal of Korean Science Education, 32(9), 1470-1488.
Choi, A., Hand, B., & Greenbowe, T. (2013). Students’ written arguments in General Chemistry Laboratory Investigations. Research in Science Education, 43(5), 1763-1783.
Colbert, J. T., Olson, J. K., & Clough, M. P. (2007). Using the web to encourage student-generated questions in large-format introductory biology classes. CBE Life Sciences Education, 6, 42-48.
Crujeiras-Pérez, B., & Jiménez-Aleixandre, M. P. (2017). High school students' engagement in planning investigations: Findings from a longitudinal study in Spain. Chemistry Education Research and Practice, 18(1), 99-112.
Dede, C. (2004). If design-based research is the answer, what is the question? Journal of the Learning Sciences, 13(1), 105-114.
Domer, D. E., Carswell, J. W., & Spreckelmeyer, K. F. (1983). Understanding educational satisfaction. Retrieved from ERIC database. (ED 232600)
Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.
Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287-312.
Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school. Learning and teaching science in grades K-8. Washington, DC: National Academies Press.
Ford, M. (2008). Disciplinary authority and accountability in scientific practice and learning. Science Education, 92(3), 404-423.
Galbraith, D., & Torrance, M. (Eds.). (1999). Knowing what to write: Conceptual processes in text production. Amsterdam, The Netherlands: Amsterdam University Press.
Germann, P. J., Aram, R., & Burke, G. (1996). Identifying patterns and relationships among the responses of seventh‐grade students to the science process skill of designing experiments. Journal of Research in Science Teaching, 33(1), 79-99.
Grimberg, I., & Hand, B. (2009). Cognitive pathways: Analysis of students' written texts for science understanding. International Journal of Science Education, 31(4), 503-521.
Hand, B., Wallace, C. W., & Yang, E. M. (2004). Using a Science Writing Heuristic to enhance learning outcomes from laboratory activities in seventh‐grade science: Quantitative and qualitative aspects. International Journal of Science Education, 26(2), 131-149.
Hand, B. (Ed.). (2007). Science inquiry, argument and language: A case for the Science Writing Heuristic. Rotterdam, The Netherlands: Sense Publishers.
Havdala, R., & Ashkenazi, G. (2007). Coordination of theory and evidence: Effect of epistemological theories on students’ laboratory practice. Journal of Research in Science Teaching, 44(8), 1134-1159.
Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22, 85-142.
Hofstein, A., & Lunetta, V. N. (1982). The role of the laboratory in science teaching: Neglected aspects of research. Review of educational research, 52(2), 201-217.
Hofstein, A., & Walberg, H. J. (1995). Instructional strategies. In B. J. Fraser & H. J. Walberg (Eds.), Improving science education (pp. 70-89). Chicago, IL: National Society for the Study of Education.
Hofstein, A., & Lunetta, V. N. (2004). The laboratory in science education: Foundation for the 21st century. Science Education, 88(1), 28-54.
Hofstein, A., Shore, R., & Kipnis, M. (2004). Providing high school chemistry students with opportunities to develop learning skills in an inquiry-type laboratory: A case study. International Journal of Science Education, 26(1), 47-62.
Hofstein, A., Navon, O., Kipnis, M., & Mamlok-Naaman R. (2005). Developing students’ abilities to ask more and better questions resulting from inquiry-type chemistry laboratories. Journal of research in science teaching, 42(7), 791-806.
Holliday, W., Yore, L., & Alvermann, D. (1994). The reading-science learning-writing connection: Breakthroughs, barriers and promises. Journal of Research in Science Teaching, 31(9), 877-893.
Hung, P. H., Hwang, G. J., Lee, Y. H., Wu, T. H., Vogel, B., Milrad, M., & Johansson, E. (2014). A problem-based ubiquitous learning approach to improving the questioning abilities of elementary school students. Journal of Educational Technology & Society, 17(4), 316-334.
Jeong, H., Songer, N. B., & Lee, S. Y. (2007). Evidentiary competence: Sixth graders' understanding for gathering and interpreting evidence in scientific investigations. Research in Science Education, 37(1), 75-97.
Jimenez-Aleixandre, M. P., & Erduran, S. (2008). Designing argumentation learning environments. In S. Erduran & M. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 91-116). New York, NY: Springer.
Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013). Argumentation in the chemistry laboratory: Inquiry and confirmatory experiments. Research in Science Education, 43(1), 317-345.
Kelly, A. E. (2004). Design research in education: Yes, but is it methodological? Journal of the Learning Sciences, 13(1), 115-128.
Kelly, G. J., & Takao, A. (2002). Epistemic levels in argument: An analysis of university oceanography students’ use of evidence in writing. Science Education, 86(3), 314-342.
Kelly, G., Regev, J., & Prothero, W. (2008). Analysis of lines of reasoning in written argumentation. In S. Erduran & M. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 137-158). Dordrecht, The Netherlands: Springer.
Ketpichainarong, W., Panijpan, B., & Ruenwongsa, P. (2010). Enhanced learning of biotechnology students by an inquiry based cellulase laboratory. International Journal of Environmental and Science Education, 5(2), 169-187.
Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of research in science Teaching, 36(10), 1065-1084.
Keys, C. W. (1999). Language as an indicator of meaning generation: An analysis of middle school students’ written discourse about scientific investigations. Journal of Research in Science Teaching, 36(9), 1044-1061.
Keys, C. W., & Bryan, L. A. (2001). Co‐constructing inquiry‐based science with teachers: Essential research for lasting reform. Journal of research in science teaching, 38(6), 631-645.
Khishfe, R. (2012). Nature of science and decision-making. International Journal of Science Education, 34(1), 67-100.
Kind, P. M., Kind, V., Hofstein, A., & Wilson, J. (2011). Peer argumentation in the school science laboratory-exploring effects of task features. International Journal of Science Education, 33(18), 2577-2558.
Kind, P. M. (2013). Establishing assessment scales using a novel disciplinary rationale for scientific reasoning. Journal of Research in Science Teaching, 50(5), 530-560.
Kingir, S., Geban, O., & Gunel, M. (2012). How does the science writing heuristic approach affect students' performances of different academic achievement levels? A case for high school chemistry. Chemistry Education Research and Practice, 13(4), 428-436.
Kipnis, M., & Hofstein, A. (2008). The inquiry laboratory as a source for development of metacognitive skills. International Journal of Science and Mathematics Education, 6(3), 601-627.
Klahr, D., Fay, A. L., & Dunbar, K. (1993). Heuristics for scientific experimentation: A developmental study. Cognitive psychology, 25(1), 111-146.
Klein, P. D. (2006). The challenges of scientific literacy: From the viewpoint of second‐generation cognitive science. International Journal of Science Education, 28(2-3), 143-178.
Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J. A., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350.
Kuhn, T. S. (1970). The Structure of Scientific Revolutions. Chicago, IL: Chicago University Press.
Kuo, C. Y., Wu, H. K., Jen, T. H., & Hsu, Y. S. (2015). Development and validation of a multimedia-based assessment of scientific inquiry abilities. International Journal of Science Education, 37(14), 2326-2357.
Leblebicioglu, G., Abik, N. M., Capkinoglu, E., Metin, D., Dogan, E. E., Cetin, P. S., & Schwartz, R. (2017). Science camps for introducing nature of scientific inquiry through student inquiries in nature: Two applications with retention study. Research in Science Education, 1-25.
Lederman, N. G., Abd‐El‐Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of nature of science questionnaire: Toward valid and meaningful assessment of learners' conceptions of nature of science. Journal of research in science teaching, 39(6), 497-521.
Lederman, N. G., & Lederman, J. S. (2004). Revising instruction to teach nature of science. The Science Teacher, 71(9), 36-39.
Lederman, N. G., Lederman, J. S., & Antink, A. (2013). Nature of science and scientific inquiry as contexts for the learning of science and achievement of scientific literacy. International Journal of Education in Mathematics, Science and Technology, 1(3), 138-147.
Lin, H.-S., Hong, Z.-R., Chen, C.-C., & Chou, C.-H. (2011). The effect of integrating aesthetic understanding in reflective inquiry activities. International Journal of Science Education, 33(9), 1199-1217.
Lin, S., & Mintzes, J. J. (2010). Learning argumentation sills through instruction in socioscientific issues: The effect of ability level. International Journal of Science and Mathematics Education, 8(6), 993-1017.
Lorch, R. F., Lorch, E. P., Calderhead, W. J., Dunlap, E. E., Hodell, E. C., & Freer, B. D. (2010). Learning the control of variables strategy in higher and lower achieving classrooms: Contributions of explicit instruction and experimentation. Journal of Educational Psychology, 102(1), 90-101.
Lord, T., & Orkwiszewski, T. (2006). Moving from didactic to inquiry-based instruction in a science laboratory. American Biology Teacher, 68(6), 342-345.
Lucas, K. B., & Roth, W. M. (1996). The nature of scientific knowledge and student learning: Two longitudinal case studies. Research in Science Education, 26(1), 103-127.
McComas, W. (2005). Laboratory instruction in the service of science teaching and learning: Reinventing and reinvigorating the laboratory experience. Science Teacher, 72(7), 24-29.
McKenney, S., Nieveen, N., & van den Akker, J. (2006). Design research from a curriculum perspective. Educational design research, 67-90.
McNeill, K., & Krajcik, J. (2007). Middle school students’ use of appropriate and inappropriate evidence in writing scientific explanations. In M. Lovett & P. Shah (Eds.), Thinking with data (pp. 233-265). New York, NY: Taylor & Francis.
McNeill, K. L., Berland, L., & McNeill, K. L. (2015). Design Heuristics to Enable Students Productive Use of Evidence in k-12 Classrooms. Symposium conducted at the meeting of the National Association for Research in Science Teaching, Chicago, IL.
Mc Tighe, J., & Wiggins, G. (2004). Understanding by design: Professional development workbook. Alexandria, VA: Association for Supervision and Curriculum Development.
National Research Council. (1996). National science education standards. Washington, DC: National Academies Press.
National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
National Research Council. (2006). America’s lab report: Investigations in high school science. Washington, DC: National Academies Press.
National Research Council. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Pres.
Next Generation Science Standards Lead States (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.
National Science Teachers Association. (2000). NSTA position statement on the
nature of science. Retrieved from http://www.nsta.org/
Nott, M., & Wellington, J. (1998). A programme for developing understanding of the nature of science in teacher education, The nature of science in science education (pp. 293-313). Dordrecht, The Netherlands: Springer.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328, 463-466.
Pine, J., Aschbacher, P., Roth, E., Jones, M., McPhee, C., Martin, C., . . . Foley, B. (2006). Fifth graders' science inquiry abilities: A comparative study of students in hands-on and textbook curricula. Journal of Research in Science Teaching, 43(5), 467-484.
Rivard, L. P. (2004). Are language-based activities in science effective for all students, including low achievers? Science Education, 88(3), 420-442.
Roth, K., & Garnier, H. (2006). What science teaching looks like: An international perspective. Educational Leadership, 64(4), 16-23.
Russ, R. S., Coffey, J. E., Hammer, D., & Hutchison, P. (2009). Making classroom assessment more accountable to scientific reasoning: A case for attending to mechanistic thinking. Science Education, 93(5), 875-891.
Russ, R. S. (2014). Epistemology of science vs. epistemology for science. Science Education, 98(3), 388-396.
Sampson, V., & Walker, J. P. (2012). Argument-driven inquiry as a way to help undergraduate students write to learn by learning to write in chemistry. International Journal of Science Education, 34(10), 1443-1485.
Sampson, V., Enderle, P., Grooms, J., & Witte, S. (2013). Writing to learn by learning to write during the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas. Science Education, 97(5), 643-670.
Sanders, E. R., Moberg-Parker, J., Hirsch, A. M., Lee, P. Y., Shapiro, C., Toma, S., & Levis-Fitzgerald, M. (2016). Transforming laboratory education in the life sciences. Microbe, 11(2), 69-74.
Scardamalia, M., & Bereiter, C. (2006). Knowledge building: Theory, pedagogy, and technology. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 97-118). London, England: Cambridge University Press.
Schwartz, R. S., & Crawford, B. A. (2004). Authentic scientific inquiry as a context for teaching nature of science: identifying critical elements for success. In L. Flick & N. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education. Dordrecht, The Netherlands: Kluwer Academic Publishers.
Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing view of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science Education, 88(4), 610-645.
Schwartz, R. S., & Lederman, N. G. (2008). What scientists say. Scientists’ views of nature of science and relation to science context. International Journal of Science Education, 30, 727-771.
Schwarz, C. (2009). Developing preservice elementary teachers’ knowledge and practices through modeling-centered scientific inquiry. Science Education, 93(4), 720-744.
Séré, M. G. (2002). Towards renewed research questions from the outcomes of the European project labwork in science education. Science Education, 86(5), 624-644.
Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Use in assessing rater reliability. Psychological Bulletin, 86(2), 420-428.
Taber, K. S. (2008). Towards a curricular model of the nature of science. Science & Education, 17(2-3), 179-218.
Teddlie, C., & Tashakkori, A. (2009). Foundations of mixed methods research. Thousand Oaks, CA: Sage.
The Design-Based Research & Collective. (2003). Design-based research: An emerging paradigm for educational Inquiry. Educational Researcher, 32(1), 5-8.
Tobin, K. G. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90 (5), 403-418.
Tuan, H. L., Chin, C. C., Tsai, C. C., & Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International Journal of Science and Mathematics Education, 3(4), 541-566.
Walker, J., & Sampson, V. (2013). Learning to argue and arguing to learn: Argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research in Science Teaching, 50(5), 561-596.
Walberg, H. J. (1968). Structual and affective aspects of classroom climate. Psychology in the school, 5(3), 247-253.
Wallace, C. S., Hand, B., & Prain, V. (2004). Writing and learning in the science classroom. Boston, MA: Kluwer.
Walton, D. N. (1998). The new dialectic: Conversational contexts of argument. Toronto, Canada: University of Toronto Press.
Wang, W., & Coll, R. K. (2005). An investigation of tertiary-level learning in some practical physics courses. International Journal of Science and Mathematics Education, 3(4), 639-669.
Watson, J. R., Swain, J. R. L., & McRobbie, C. (2004). Research report: Students' discussions in practical scientific inquiries. International Journal of Science Education, 26(1), 25-45.
Wenning, C. J. (2007). Assessing inquiry skills as a component of scientific literacy. Journal of Physics Teacher Education Online, 4(2), 21-24.
White, R. T. (1996). The link between the laboratory and learning. International Journal of Science Education, 18(7), 761-774.
Yacoubian, H. A., & BouJaoude, S. (2010). The effect of reflective discussions following inquiry‐based laboratory activities on students' views of nature of science. Journal of Research in Science Teaching, 47(10), 1229-1252.
Yesildag-Hasancebl, F., & Kingir, S. (2012). Overview of obstacles in the implementation of the argumentation based science inquiry approach and pedagogical suggestions. Mevlana International Journal of Education, 2(3), 79-94.
Yoshida, H. (1883). LXIII.—chemistry of lacquer (Urushi). Part I. communication from the chemical society of Tokio. Journal of the Chemical Society, Transactions, 43, 472-486.
Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81(4), 483-496.
Zion, M., Michalsky, T., & Mevarech, Z. R. (2005). The effects of metacognitive instruction embedded within an asynchronous learning network on scientific inquiry skills. International Journal of Science Education, 27(8), 957-983.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE