:::

詳目顯示

回上一頁
題名:翻轉教室融入論證探究教學模式之發展與學生成效評估—以遺傳單元為例
作者:鍾昌宏
作者(外文):Chung, Chang-Hung
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:王國華
學位類別:博士
出版日期:2017
主題關鍵詞:翻轉教室電腦模擬論證探究學習環境遺傳概念flipped classroomcomputer simulationargumentationinquirylearning environmentgenetic topics
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(1) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:1
  • 共同引用共同引用:0
  • 點閱點閱:15
本研究旨在探討「翻轉教室融入論證探究教學模式」的發展與實施,及對學生學習的成效。主要採準實驗研究法,研究對象來自臺灣地區北、中、南六個縣市的國民中學,共有15位教師與其所任教的36個班級共1005位學生參與。研究設計為探討不同「資訊科技融入程度」與「翻轉論證探究模式」兩種教學策略對學生學習成就、論證能力、與學習環境感受的影響。研究者將「資訊科技融入程度」由低至高分為無資訊科技融入、教師展示投影片、教師展示電腦模擬與學生操作電腦模擬,亦將「翻轉論證探究模式」分為三種不同的類型,包含:講述、AIR論證探究(論證Argumentation-探究Inquiry-反思Reflection, 簡稱AIR)與IPAD AIR翻轉論證探究,IPAD翻轉教室指的是課室教學前的自主學習的任務,包含文本引入、預習筆記、線上評量與觀看教學影片(Induction, Preview note, Assessment, Designed video,簡稱IPAD)。基於以上,研究對象依據教學模式的差異分為七組,分別為:傳統講述教學組、教師展示PPT的論證式探究教學組、教師展示電腦模擬的論證式探究教學組、學生操作電腦模擬的論證式探究教學組、翻轉教室融入教師展示PPT的論證式探究教學組、翻轉教室融入教師展示電腦模擬的論證式探究教學組與翻轉教室融入學生操作電腦模擬的論證式探究教學組。
課程教學以國一生物遺傳單元為主題,所有組別皆使用13節課,包含前測1節課、後測2節課,以及10節該組教學模式介入的遺傳學課程。傳統講述教學組為對照組,無資訊科技融入亦無翻轉論證探究,其餘組別皆為實驗組,課程全數結合Biologica電腦模擬軟體與AIR論證探究教學,且採用漸近的方式讓探究活動與論證活動交織進行。實驗組間的差異在於電腦模擬軟體融入的程度,以及是否有IPAD翻轉教室模式的融入。在資料分析的部分,學習成就部分蒐集遺傳學成就測驗前測與後測成績,進行二因子共變數或單因子共變數分析;論證能力與學習環境感受的部分,整理論證能力評量單與建構多媒體學習環境量表分數,進行二因子變異數或單因子變異數分析。
研究結果發現,「資訊科技融入程度」與「翻轉論證探究模式」兩種教學策略在學習成就與學習環境感受部分的交互作用未達顯著,但在論證能力的部分有顯著的交互作用(p = .005)。整體而言,接受AIR論證探究教學的組別其學習成效(包括:學習成就、論證能力、學習環境感受)顯著優於傳統講述組(p < .01);不同「資訊科技融入程度」會影響學習成效,讓學生操作電腦模擬的學習策略顯著優於其它資訊科技融入程度(p < .05);不同「翻轉論證探究模式」的類型亦會影響到學習成效,IPAD AIR翻轉論證探究教學的學習成效皆顯著優於其它組別。除此之外,透過學生的回饋,發現多數學生在操作電腦模擬軟體時不受英文介面影響,學生除了表達對於課程的喜好外,亦認為相較於課本中的孟德爾碗豆主題,結合電腦模擬的本課程更有助於學習。另外,學生也表達IPAD AIR翻轉論證探究教學的各個步驟都可以幫助其學習。研究者反思IPAD AIR翻轉論證探究教學模式還可再精緻化,而且實施IPAD AIR模式,可促進教師的翻轉論證探究教學的專業發展。最後,有關於教學與研究的建議也在內文中討論。
This study intended to investigate the development and Implementation of the model integrating flipped classroom into argumentation-based inquiry teaching and student learning performance. Primarily several quasi-experiments were adopted. The participants, including 15 teachers, 36 classrooms, and 1005 students, all came from 6 cities in the north, middle, and south cities of Taiwan. The influence of both the extent of information technology integration and the model of flipped classroom incorporated into argumentation-based inquiry on students’ learning achievement, argumentation ability and the perception of learning environment will be discussed. The extent of information technology integration was manipulated to variant degrees from the lowest integration of no integration, teacher demonstrating power-point slides, teacher demonstrating computer simulation, to the highest integration of student playing computer simulation. The models incorporating flipped classroom into argumentation-based inquiry teaching were designed as 3 types which included lecture, AIR (Argumentation-Inquiry-Reflection), and IPAD AIR (Induction, Preview note, Assessment, and Designed video before Argumentation-Inquiry-Reflection). The IPAD refers to the students’ learning at home before formal classroom instruction. According to the manipulation of teaching models, the participants were assigned into 7 kinds of instruction: traditional lecture instruction, teacher demonstrating PPT with argumentation-based inquiry, teacher demonstrating computer simulation with argumentation-based inquiry, student playing computer simulation with argumentation-based inquiry, flipped classroom incorporated into teacher demonstrating PPT with argumentation-based inquiry, flipped classroom incorporated into demonstrating computer simulation with argumentation-based inquiry, as well as flipped classroom incorporated into student playing computer simulation with argumentation-based inquiry.
The topic of instruction focused on the biological genetic topics from textbook in 7th grade curriculum. All the 7 kinds of instruction lasted for 13 classes including 1 class for pre-test, 2 classes for post-test, and 10 classes for the target heredity curriculum. The traditional lecture instruction functioned as controlled group which did not have any information technology integration nor flipped classroom into any argumentation-based inquiry. The other kinds of instruction were all experimental groups which used the software of Biologica computer simulation and AIR in the way of graduated scaffolding to access both argumentation and inquiry. The difference among the experimental groups lay in the extent of information technology integration and whether IPAD was incorporated. In regard with the data analysis, two-way ANCOVA and one-way ANCOVA were used to deal with the data from the pre-test and post-test. The data of argumentation capability and learning environment perception, drawn from the assessment sheet and the rubrics of constructing multimedia learning environment, were processed by either two-way ANOVA and one-way ANOVA.
The results revealed that both the extent of information technology integration and the model of flipped classroom incorporated into argumentation-based inquiry were not significant with respect to the interaction of learning achievement and learning environment perception. However, it was significant with respect to argumentation capability (p = .005). In result, all the classrooms accepted AIR outscored the others in learning achievement, argumentation capability and learning environment perception (p < .01). The extent of information technology integration could influence learning achievement. The strategy of student playing computer simulation could facilitate conceptual learning of heredity, relevant argumentation as well as the perception of learning environment (p < .05). The variant kinds of flipped classroom incorporated into argumentation-based inquiry would also influence learning achievement. All the participants who had accepted IPAD AIR had better learning achievement, argumentation capability, and learning environment perception than those who only accepted AIR. In addition, students’ feedback revealed that they could control the software even if it was labeled in English. They did not only confirm that they loved the curriculum but also expressed the integration of computer simulation was much more beneficial in learning the topic of Mendel pea plant experiment. Moreover, the strategies of IPAD AIR can facilitate their learning. Researcher reflected that IPAD AIR teaching model can be more elaborated, and the implementation of IPAD AIR teaching can enhance their professional growth on flipped classroom into argumentation-based inquiry teaching. Finally, the relative suggestion of teaching and research were discussed.
一、中文文獻
王士文(2009)。探究不同電腦模擬使用情境對概念學習的影響:以七年級遺傳單元為例(未出版之碩士論文)。國立臺灣師範大學,臺北市。
江文慈(2007)。超越測量-評量典範轉移的探索與啟示。教育實踐與研究,20(1),173-200。new window
余民寧(1997)。有意義的學習-概念構圖之研究。臺北市:商鼎文化。new window
吳明隆(2007)。SPSS操作與應用:變異數分析實務。臺北市:五南。
吳明隆(2010)。SPSS操作與應用--變異數分析實務。臺北市:五南。
吳明隆(2011)。SPSS統計應用學習實務:問卷分析與應用統計。新北市:易習圖書。
吳明隆、涂金堂(2014)。SPSS與統計應用分析。臺北市:五南。
李松濤、林煥祥、洪振方(2010)。探究式教學對學童科學論證能力影響之探究。科學教育學刊,18(3),177-203。new window
官翰德、陳龍川(2000)。融入電腦模擬的概念改變教學策略對兒童密度相關概念學習成就之影響。花蓮師院學報,10,299-323。new window
林志能、洪振方(2008)。論證模式分析及其評量要素。科學教育月刊,312,2-18。
林宗進、林樹聲、陳映均(2010)。大學生對基因改造作物議題的認知與論證能力之研究。科學教育學刊,18(3),229-252。new window
林英智、李清勝、黃能堂、張永達、蔡尚芳(2012)。國中自然與生活科技教師手冊備課篇(第二冊)。新北市:康軒。
林樹聲、黃柏鴻(2009)。國小六年級學生在社會性科學議題教學中之論證能力研究-不同學業成就學生間之比較。科學教育學刊,17(2),111-133。new window
林燕文、洪振方(2007)。對話論證的探究對促進學童科學概念理解之探討。花蓮教育大學學報,24,139-177。new window
邱皓政(2010)。量化研究與統計分析:SPSS(PASW)資料分析範例解析。臺北市:五南。
洪月女(2016)。學科閱讀研究與教學之探討。高雄師大學報,40,19-39。new window
洪振方(1994)。從孔恩異例的認知與論證探討科學知識的重建(未出版之博士論文)。國立臺灣師範大學,臺北市。new window
洪振方、林志能(2011)。網路與課室學習環境促進學童論證能力之效益。教育實踐與研究,24(1),67-105。new window
洪振方、封中興(2011)。以「探索-論證-評價」為基礎的探究教學模式在國中自然科之教學成效。科學教育研究與發展季刊,60,1-34。
范雅晴(2012)。IPadE論證訓練模式對大學生AIDS知識、健康信念與論證能力之影響(未出版之博士論文)。國立彰化師範大學,彰化縣。new window
郝永崴(2015)。翻轉教室:談學生看法。教育脈動,1,34-52。
張玉連、蔡孟涵、康仕仲(2015)。導入「誘發式翻轉教室」成效分析-以水資源及防災教育遊戲學習為例。災害防救科技與管理學刊,4(2),19-58。new window
張春興(2001)。教育心理學。臺北市:東華書局。
張淑女(2004)。從認識論的觀點探究大學生論證思考之能力與模式(未出版之博士論文)。國立臺灣師範大學,臺北市。new window
教育部(2003)。科學教育白皮書。臺北:教育部。
教育部(2008a)。國民中小學九年一貫課程綱要自然與生活科技學習領域。臺北市:教育部。new window
教育部(2008b)。普通高級中學必修科目「基礎生物(1)」課程綱要。臺北市:教育部。
教育部(2014)。十二年國民基本教育課程綱要總綱。臺北市:教育部。
教育部(2015)。十二年國民基本教育自然科學領域課程綱要草案。臺北市:教育部。
郭生玉(1998)。心理與教育測驗。新北市:精華書局。
陳文正、古智雄、許瑛玿、楊文金(2011)。概念卡通論證教學促進學童論證能力之研究。科學教育學刊,19(1),69-99。new window
陳秀溶、王國華、蔡顯麞、鄧又仁(2015)。運用論證導向探究式教學模組於七年級自然科教學設計--「是否興建國光石化」議題。科學教育月刊,384,39-49。
陳穎志、曾敬梅、張文華(2010)。探討教師角色在促進國小學童論證表現的改變-以啟發式科學寫作(SWH)教學為情境的四年個案研究。科學教育學刊,18(5),417-442。new window
黃柏鴻、林樹聲(2007)。論證教學相關實證性研究之回顧與省思。科學教育,302,5-20。
黃茂在、陳文典(2011)。科學閱讀的想法與實例探討。教育研究月刊,210,85-100。new window
黃能富(2015)。磨課師(MOOCs)與師博課(SPOCs)協同授課之翻轉教學法。教育脈動,1,101-110。
黃翎斐、胡瑞萍(2006)。論證與科學教育的理論和實務。科學教育,292,15-28。
黃翎斐、張文華、林陳涌(2008)。不同佈題模式對學生論證表現的影響。科學教育學刊,16(4),375-393。new window
楊坤原、張賴妙理(2004a)。發展和應用二段式診斷工具來偵測國中一年級學生之遺傳學另有概念。科學教育學刊,12(1),107-131。new window
楊坤原、張賴妙理(2004b)。遺傳學迷思概念之文獻探討及其在教學上的啟示。科學教育學刊,12(3),365-398。new window
楊凱悌(2012)。以科技為基礎之課室互動教學環境對於國中學生細胞分裂概念學習之影響(未出版之博士論文)。國立臺灣師範大學,臺北市。new window
董又愷、林樹聲(2014)。以結構式探究教學促進國小學生了解證據和從事論證之行動研究。科學教育月刊,375,2-19。
臺灣PISA國家研究中心(2014)。PISA2012臺灣精簡報告【網路訊息】。取自http://pisa.nutn.edu.tw/download/data/TaiwanPISA2012ShortReport.pdf
蓋允萍、鍾昌宏、王國華、張惠博、Unsworth, L.(2014)。以視覺設計文法比較臺澳科學教科書圖像-以七年級生物分類單元為例。科學教育學刊,22(2),109-134。new window
蔡佩穎、張文華、林雅慧、張惠博(2012)。初探論證科學新聞對七年級學生生物學習之效益。中等教育,63(1),13-37。new window
蔡俊彥、黃台珠、楊錦潭(2008)。國小學童網路論證能力及科學概念學習之研究。科學教育學刊,16(2),171-192。new window
蔡瑞君(2015)。翻轉教室之過去、現在與未來。教育脈動,1,21-33。
鄭圓鈴、許芳菊(2013)。閱讀理解,如何學?怎麼教?閱讀理解,如何學?怎麼教?。臺北市:天下雜誌。
賴麗珍(2014)。重理解的課程設計。臺北市:心理。
戴文雄、王裕德、王瑞、陳嘉苓(2016)。翻轉教學式合作學習對生活科技實作課程學習成效影響之研究。科學教育學刊,24(1),57-88。new window
鍾昌宏(2015)。在翻轉教室前可以思考的10件事,親子天下專特刊,1,62-64。
鍾昌宏、王國華(2014)。國民中學學生接受不同電腦模擬融入論證式探究的教學模式之學習成效探討--以遺傳單元為例。數位學習科技期刊,6(3),19-40。new window
蘇衍丞、林樹聲(2012)。在社會性科學議題情境下應用鷹架教學提升國小六年級學生論證能力。科學教育學刊,20(4),343-366。new window

二、英文文獻
Annetta, L. A. (2010). The “I's” have it: A framework for serious educational game design. Review of General Psychology, 14(2), 105-112.
Annetta, L. A., Minogue, J., Holmes, S. Y., & Cheng, M. T. (2009). Investigating the impact of video games on high school students’ engagement and learning about genetics. Computers & Education, 53(1), 74-85.
Arnold-Garza, S. (2014). The flipped classroom teaching model and its use for information literacy instruction. Communications in Information Literacy, 8(1), 7-22.
Aufschnaiter, C. V., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101-131.
Baepler, P., Walker, J. D., & Driessen, M. (2014). It's not about seat time: Blending, flipping, and efficiency in active learning classrooms. Computers & Education, 78(0), 227-236.
Baytiyeh, H. (2017). The flipped classroom model: When technology enhances professional skills. International Journal of Information and Learning Technology, 34(1), 51-62.
Bergmann, J., & Sams, A. (2009). Remixing chemistry class: Two colorado teachers make vodcasts of their lectures to free up class time for hands-on activities. Learning & Leading with Technology, 36(4), 22-27.
Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Washington, DC: International Society for Technology in Education (ISTE).
Bergmann, J., & Sams, A. (2014). Flipped learning: Gateway to student engagement. Washington, DC: International Society for Technology in Education (ISTE).
Berland, L. K., & Reiser, B. J. (2009). Making sense of argumentation and explanation. Science Education, 93(1), 26-55.
Bonwell, C. C., & Eison, J. A. (1991). Active learning: Creating excitement in the classroom. Washington, DC: George Washington University.
Bouyias, Y., & Demetriadis, S. (2012). Peer-monitoring vs. micro-script fading for enhancing knowledge acquisition when learning in computer-supported argumentation environments. Computers & Education, 59(2), 236-249.
Box, G. E. (1954). Some theorems on quadratic forms applied in the study of analysis of variance problems, I. Effect of inequality of variance in the one-way classification. The annals of mathematical statistics, 25(2), 290-302.
Bransford, J. D., Brown, A. L., & Cocking, R. R. (2000). How people learn: Brain, mind, experience, and school. Washington, DC: National Academy Press.
Buckley, B. C., Gobert, J. D., Horwitz, P., & O'Dwyer, L. M. (2010). Looking inside the black box: Assessing model-based learning and inquiry in BioLogica™. International Journal of Learning Technology, 5(2), 166-190.
Buckley, B. C., Gobert, J. D., Kindfield, A. C., Horwitz, P., Tinker, R. F., Gerlits, B., Wilensky, U., Dede, C., & Willett, J. (2004). Model-based teaching and learning with BioLogica™: What do they learn? How do they learn? How do we know? Journal of Science Education and Technology, 13(1), 23-41.
Buckley, B. C., & Quellmalz, E. S. (2013). Supporting and assessing complex biology learning with computer-based simulations and representations. In D. F. Treagust & C. Y. Tsui (Eds.), Multiple Representations in Biological Education (Vol. 7) (pp. 247-267). Dordrecht, The Netherlands: Springer.
Burnard, P. (1999). Carl rogers and postmodernism: Challenges in nursing and health sciences. Nursing & Health Sciences, 1(4), 241-247.
Bybee, R. W., & Landes, N. M. (1988). The biological sciences curriculum study (BSCS). Science and Children, 25(8), 36-37.
Campbell, T., Zhang, D., & Neilson, D. (2011). Model based inquiry in the high school physics classroom: An exploratory study of implementation and outcomes. Journal of Science Education and Technology, 20(3), 258-269.
Caulfield, J. (2011). How to design and teach a hybrid course: Achieving student-centered learning through blended classroom, online, and experiential activities. Sterling, VA: Stylus Publishing.
Chang, H.-Y., Wang, C.-Y., Lee, M.-H., Wu, H.-K., Liang, J.-C., Lee, S. W. Y., Chiou, G.-L., Lo, H.-C., Lin, J.-W., Hsu, C.-Y., Wu, Y.-T., Chen, S., Hwang, F.-K., Tsai, C.-C. (2015). A review of features of technology-supported learning environments based on participants’ perceptions. Computers in Human Behavior, 53, 223-237.
Chang, S. N., & Chiu, M. H. (2008). Lakatos’ scientific research programmes as a framework for analysing informal argumentation about socio‐scientific Issues. International Journal of Science Education, 30(13), 1753-1773.
Chen, H.-T., Wang, H.-H., Lin, H.-S., P. Lawrenz, F., & Hong, Z.-R. (2014). Longitudinal study of an after-school, inquiry-based science intervention on low-achieving children's affective perceptions of learning science. International Journal of Science Education, 36(13), 2133-2156.
Chen, S.-C., Yang, S. J. H., & Hsiao, C.-C. (2016). Exploring student perceptions, learning outcome and gender differences in a flipped mathematics course. British Journal of Educational Technology, 47(6), 1096-1112.
Chen, Y.-C., Hand, B., & Park, S. (2016). Examining elementary students’ development of oral and written argumentation practices through argument-based inquiry. Science & Education, 25(3), 277-320.
Chen, Y., Wang, Y., Kinshuk, & Chen, N.-S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead? Computers & Education, 79(0), 16-27.
Cho, K.-L., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem solving. Educational Technology Research and Development, 50(3), 5-22.
Choi, A., Hand, B., & Greenbowe, T. (2013). Students’ written arguments in general chemistry laboratory investigations. Research in Science Education, 43(5), 1763-1783.
Choi, A., Hand, B., & Norton-Meier, L. (2014). Grade 5 students' online argumentation about their in-class inquiry investigations. Research in Science Education, 44(2), 267-287.
Clark, D. B., & Sampson, V. D. (2007). Personally‐seeded discussions to scaffold online argumentation. International Journal of Science Education, 29(3), 253-277.
Clark, K. R. (2015). The effects of the flipped model of instruction on student engagement and performance in the secondary mathematics classroom. Journal of Educators Online, 12(1), 91-115.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Laurence Erlbaum.
Cohen, M. E. (2016). The flipped classroom as a tool for engaging discipline faculty in collaboration: A case study in library-business collaboration. New Review of Academic Librarianship, 22(1), 5-23.
Dass, K., Head, M. L., & Rushton, G. T. (2015). Building an understanding of how model-based inquiry is implemented in the high school chemistry classroom. Journal of Chemical Education, 92(8), 1306-1314.
Davies, R., Dean, D., & Ball, N. (2013). Flipping the classroom and instructional technology integration in a college-level information systems spreadsheet course. Educational Technology Research and Development, 61(4), 563-580.
Demirbag, M., & Gunel, M. (2014). Integrating argument-based science inquiry with modal representations: Impact on science achievement, argumentation, and writing skills. Educational Sciences: Theory and Practice, 14(1), 386-391.
Demircioglu, T., & Ucar, S. (2015). Investigating the effect of argument-driven inquiry in laboratory instruction. Educational Sciences: Theory and Practice, 15(1), 267-283.
Glance, S. G., Forsey, M., & Riley, M. (2013). The pedagogical foundation of massive open online courses. Retrieved from http://firstmonday.org/ojs/index.php/fm/article/view/4350/3673
Duschl, R. A., & Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72.
Fakari, F. R., Kordi, M., Mazloom, S. R., Khadivzadeh, T., Tara, M., & Akhlaghi, F. (2015). Comparing the effect of traditional, web based and simulation training on midwifery students’ clinical competence in postpartum hemorrhage management. Journal of Mazandaran University of Medical Sciences, 25(123), 67-79.
Flumerfelt, S., & Green, G. (2013). Using lean in the flipped classroom for at risk students. Journal of Educational Technology & Society, 16(1), 356-366.
Flynn, A. B. (2015). Structure and evaluation of flipped chemistry courses: Organic & spectroscopy, large and small, first to third year, English and French. Chemistry Education Research and Practice, 16(2), 198-211.
Gelbart, H., Brill, G., & Yarden, A. (2009). The impact of a web-based research simulation in bioinformatics on students’ understanding of genetics. Research in Science Education, 39(5), 725-751.
Gibbons, N. J., Evans, C., Payne, A., Shah, K., & Griffin, D. K. (2004). Computer simulations improve university instructional laboratories. Cell Biology Education, 3(4), 263-269.
Giere, R. N. (1991). Understanding scientific reasoning. Fort Worth, TX: Holt, Rinehart, & Winston.
Gilboy, M. B., Heinerichs, S., & Pazzaglia, G. (2015). Enhancing student engagement using the flipped classroom. Journal of Nutrition Education and Behavior, 47(1), 109-114.
Gobert, J., Buckley, B., & Clarke, J. E. (2004). Scaffolding model-based reasoning: Representations, cognitive affordances, and learning outcomes. Paper presented at the American Educational Research Association, San Diego, CA.
Gobert, J. D., & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891-894.
González-Cruz, J., Rodríguez-Sotres, R., & Rodríguez-Penagos, M. (2003). On the convenience of using a computer simulation to teach enzyme kinetics to undergraduate students with biological chemistry-related curricula. Biochemistry and Molecular Biology Education, 31(2), 93-101.
González-Gómez, D., Jeong, J. S., Airado Rodríguez, D., & Cañada-Cañada, F. (2016). Performance and perception in the flipped learning model: An initial approach to evaluate the effectiveness of a new teaching methodology in a general science classroom. Journal of Science Education and Technology, 25(3), 450-459.
Grooms, J., Sampson, V., & Golden, B. (2014). Comparing the effectiveness of verification and inquiry laboratories in supporting undergraduate science students in constructing arguments around socioscientific issues. International Journal of Science Education, 36(9), 1412-1433.
Gulley, O. D., & Jackson, A. L. (2016). A case study on using instructor-recorded videos in an upper level economics course. International Review of Economics Education, 23, 28-33.
Gunyou, J. (2015). I flipped my classroom: One teacher's quest to remain relevant. Journal of Public Affairs Education, 21(1), 13-24.
Guo, P. J., Kim, J., & Rubin, R. (2014, March 04). How video production affects student engagement: An empirical study of MOOC videos [Web blog message]. Retrieved from http://pgbovine.net/publications/edX-MOOC-video-production-and-engagement_LAS-2014.pdf
Hamdan, N., McKnight, P., McKnight, K., & Arfstrom, K. M. (2013). A review of Flipped learning. Retrieved from http://flippedlearning.org/wp-content/uploads/2016/07/LitReview_FlippedLearning.pdf
Hand, B., Norton-Meier, L. A., Gunel, M., & Akkus, R. (2016). Aligning teaching to learning: A 3-year study examining the embedding of language and argumentation into elementary science classrooms. International Journal of Science and Mathematics Education, 14(5), 847-863.
Hantla, B. F. (2014). The effects of flipping the classroom on specific aspects of critical thinking in a christian college: A quasi-experimental, mixed-methods study. (Unpublished doctoral dissertation). Southeastern Baptist Theological Seminary, Wake Forest, NC.
Harden, R. M., & Crosby, J. (2000). AMEE guide no 20: The good teacher is more than a lecturer - the twelve roles of the teacher. Medical Teacher, 22(4), 334-347.
Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated expertise in integrating use of multimedia simulation into secondary science teaching. International Journal of Science Education, 28(7), 701-732.
Hew, K. F., & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): Motivations and challenges. Educational Research Review, 12, 45-58.
Hickey, D. T., Kindfield, A. C., Horwitz, P., & Christie, M. A. T. (2003). Integrating curriculum, instruction, assessment, and evaluation in a technology-supported genetics learning environment. American Educational Research Journal, 40(2), 495-538.
Holzinger, A., Kickmeier-Rust, M. D., Wassertheurer, S., & Hessinger, M. (2009). Learning performance with interactive simulations in medical education: Lessons learned from results of learning complex physiological models with the HAEMOdynamics SIMulator. Computers & Education, 52(2), 292-301.
Honey, M., & Hilton, M. (2011). Learning science: Computer games, simulations, and education. Washington, DC: National Academies Press.
Horwitz, P., & Christie, M. A. (2000). Computer-based manipulatives for teaching scientific reasoning: An example. In M. J. Jacobson & R. B. Kozma (Eds.), Learning the sciences of the 21st century: Theory, research, and the design of advanced technology learning environments. (pp. 163-191). Mahwah, NJ: Lawrence Erlbaum & Associates.
Horwitz, P., Gobert, J. D., Buckley, B. C., & O’Dwyer, L. M. (2010). Learning genetics from dragons: From computer-based manipulatives to hypermodels. In M. J. Jacobson & P. Reimann (Eds.), Designs for learning environments of the future: International perspectives from the learning sciences (pp. 61-87). Boston, MA: Springer US.
Hsu, C.-C., Chiu, C.-H., Lin, C.-H., & Wang, T.-I. (2015). Enhancing skill in constructing scientific explanations using a structured argumentation scaffold in scientific inquiry. Computers & Education, 91, 46-59.
Hsu, S.-D., Chen, C.-J., Chang, W.-K., & Hu, Y.-J. (2016). An investigation of the outcomes of PGY students’ cognition of and persistent behavior in learning through the intervention of the flipped classroom in taiwan. PLOS ONE, 11(12), 1-14.
Huang, C. J., Wang, Y. W., Huang, T. H., Chen, Y. C., Chen, H. M., & Chang, S. C. (2011). Performance evaluation of an online argumentation learning assistance agent. Computers & Education, 57(1), 1270-1280.
Huang, Y.-N., & Hong, Z.-R. (2016). The effects of a flipped English classroom intervention on students' information and communication technology and English reading comprehension. Educational Technology Research and Development, 64(2), 175-193.
Huba, M. E., & Freed, J. E. (2000). Learner-centered assessment on college campuses: Shifting the focus from teaching to learning. Community College Journal of Research and Practice, 24(9), 759-766.
Janssen, J., Erkens, G., Kirschner, P. A., & Kanselaar, G. (2010). Effects of representational guidance during computer-supported collaborative learning. Instructional Science, 38(1), 59-88.
Jiménez-Aleixandre, M. P., & Erduran, S. (2007). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3-27). Dordrecht, The Netherlands: Springer.
Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013). Argumentation in the chemistry laboratory: Inquiry and confirmatory experiments. Research in Science Education, 43(1), 317-345.
Kelly, M., Lyng, C., McGrath, M., & Cannon, G. (2009). A multi-method study to determine the effectiveness of, and student attitudes to, online instructional videos for teaching clinical nursing skills. Nurse Education Today, 29(3), 292-300.
Keys, C. W., Hand, B., Prain, V., & Collins, S. (1999). Using the science writing heuristic as a tool for learning from laboratory investigations in secondary science. Journal of Research in Science Teaching, 36(10), 1065-1084.
Khan, S. (2011). New pedagogies on teaching science with computer simulations. Journal of Science Education and Technology, 20(3), 215-232.
Kim, B., Pathak, S. A., Jacobson, M. J., Zhang, B., & Gobert, J. D. (2015). Cycles of exploration, reflection, and consolidation in model-based learning of genetics. Journal of Science Education and Technology, 24(6), 789-802.
Kim, M. K., Kim, S. M., Khera, O., & Getman, J. (2014). The experience of three flipped classrooms in an urban university: An exploration of design principles. The Internet and Higher Education, 22, 37-50.
Kingir, S., Geban, O., & Gunel, M. (2013). Using the science writing heuristic approach to enhance student understanding in chemical change and mixture. Research in Science Education, 43(4), 1645-1663.
Kong, S. C. (2014). Developing information literacy and critical thinking skills through domain knowledge learning in digital classrooms: An experience of practicing flipped classroom strategy. Computers & Education, 78(0), 160-173.
Kong, S. C. (2015). An experience of a three-year study on the development of critical thinking skills in flipped secondary classrooms with pedagogical and technological support. Computers & Education, 89, 16-31.
Kuhn, D. (1991). The skills of arguments. Cambridge, UK: Cambridge University Press.
Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62(2), 155-179.
Kuhn, D. (2005). Education for thinking. Cambridge, MA: Harvard University Press.
Kwon, O. N., Bae, Y., & Oh, K. H. (2015). Design research on inquiry-based multivariable calculus: Focusing on students' argumentation and instructional design. ZDM Mathematics Education, 47, 997-1011.
Lakatos, I. (1978). The methodology of scientific research programmes. Cambridge, UK: Cambridge University Press.
Lawless, K. A., & Brown, S. W. (2015). Developing scientific literacy skills through interdisciplinary, technology-based global simulations: GlobalEd 2. The Curriculum Journal, 26(2), 268-289.
Lawson, A. (2003). The nature and development of hypothetico‐predictive argumentation with implications for science teaching. International Journal of Science Education, 25(11), 1387-1408.
Lea, S. J., Stephenson, D., & Troy, J. (2003). Higher education students' attitudes to student-centred learning: Beyond 'educational bulimia'? Studies in Higher Education, 28(3), 321-334.
Lee, S. W. Y., & Tsai, C. C. (2013). Technology-supported learning in secondary and undergraduate biological education: Observations from literature review. Journal of Science Education and Technology, 22(2), 226-233.
Liakopoulos, M. (2000). Argumentation analysis. In P. Atkinson, M. W. Bauer, & G. Gaskell (Eds.), Qualitative researching with text, image and sound: A practical handbook for social research (pp. 152-171). London: SAGE.
Lin, H. s., Hong, Z. R., & Cheng, Y. Y. (2009). The interplay of the classroom learning environment and inquiry‐based activities. International Journal of Science Education, 31(8), 1013-1024.
Lin, Y., Zhu, Y., Chen, C., Wang, W., Chen, T., Li, T., . . . Liu, Y. (2017). Facing the challenges in ophthalmology clerkship teaching: Is flipped classroom the answer? PLOS ONE, 12(4), e0174829.
Long, G. (2010). A detailed investigation of the applicability and utility of simulation and gaming in the teaching of civil engineering students. (Unpublished doctoral dissertation), University of Nottingham, Nottingham, UK.
Lu, J., & Zhang, Z. (2013). Scaffolding argumentation in intact class: Integrating technology and pedagogy. Computers & Education, 69, 189-198.
Maeng, J. L., Mulvey, B. K., Smetana, L. K., & Bell, R. L. (2013). Preservice teachers’ TPACK: Using technology to support inquiry instruction. Journal of Science Education and Technology, 22(6), 838-857.
Makransky, G., Bonde, M. T., Wulff, J. S. G., Wandall, J., Hood, M., Creed, P. A., . . . Nørremølle, A. (2016). Simulation based virtual learning environment in medical genetics counseling: An example of bridging the gap between theory and practice in medical education. BMC Medical Education, 16(1), 98.
Maor, D., & Fraser, B. J. (2005). An online questionnaire for evaluating students' and teachers' perceptions of constructivist multimedia learning environments. Research in Science Education, 35(2), 221-244.
Marei, H. F., & Al‐Jandan, B. A. (2013). Simulation‐based local anaesthesia teaching enhances learning outcomes. European Journal of Dental Education, 17(1), e44-e48.
Martínez-Caro, E., & Campuzano-Bolarín, F. (2011). Factors affecting students’ satisfaction in engineering disciplines: traditional vs. blended approaches. European Journal of Engineering Education, 36(5), 473-483.
Martin, M. O., Mullis, I. V. S., Foy, P., & Stanco, G. M. (2012). TIMSS 2011 international results in science. Retrieved from http://timssandpirls.bc.edu/timss2011/downloads/T11_IR_Science_FullBook.pdf
Mattis, K. V. (2015). Flipped classroom versus traditional textbook instruction: Assessing accuracy and mental effort at different levels of mathematical complexity. Technology, Knowledge and Learning, 20(2), 231-248.
Mawdesley, M., Long, G., Al-jibouri, S., & Scott, D. (2011). The enhancement of simulation based learning exercises through formalised reflection, focus groups and group presentation. Computers & Education, 56(1), 44-52.
McElhinny, T., Dougherty, M., Bowling, B., & Libarkin, J. (2014). The status of genetics curriculum in higher education in the united states: Goals and assessment. Science & Education, 23(2), 445-464.
Means, B., Toyama, Y., Murphy, R., & Baki, M. (2013). The effectiveness of online and blended learning: A meta-analysis of the empirical literature. Teachers College Record, 115, 1-47.
Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cognition and Instruction, 14(2), 139-178.
Merchant, Z., Goetz, E. T., Cifuentes, L., Keeney-Kennicutt, W., & Davis, T. J. (2014). Effectiveness of virtual reality-based instruction on students' learning outcomes in K-12 and higher education: A meta-analysis. Computers & Education, 70, 29-40.
National Academies of Sciences, E., Medicine,. (2017). Seeing students learn science: Integrating assessment and instruction in the classroom. Washington, DC: The National Academies Press.
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: The National Academies Press.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
National Research Council. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.
National Research Council. (2015). Guide to implementing the next generation science standards. Washington, DC: The National Academies Press.
Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
NGSS Lead States. (2014). Developing assessments for the next generation science standards. Washingotn, DC: National Academies Press.
Nichols, K., Gillies, R., & Hedberg, J. (2016). Argumentation-based collaborative inquiry in science through representational work: Impact on primary students’ representational fluency. Research in Science Education, 46(3), 343-364.
Noroozi, O., Weinberger, A., Biemans, H. J. A., Mulder, M., & Chizari, M. (2013). Facilitating argumentative knowledge construction through a transactive discussion script in CSCL. Computers and Education, 61(1), 59-76.
Novak, J., Kensington-Miller, B., & Evans, T. (2017). Flip or flop? Students’ perspectives of a flipped lecture in mathematics. International Journal of Mathematical Education in Science and Technology, 48(5), 647-658.
Nuffield Foundation. (2013). Model-based inquiry and practical work – an introduction Retrieved from http://www.nuffieldfoundation.org/sites/default/files/files/Introduction%20to%20model-based%20inquiry.pdf
O'Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. The Internet and Higher Education, 25, 85-95.
O'Neill, G., & McMahon, T. (2005). Student-centred learning: What does it mean for students and lecturers. In G. O’Neill, Moore, S. & McMullin, B. (Ed.), Emerging issues in the practice of university learning and teaching. Dublin: All Ireland Society for Higher Education (AISHE).
OECD. (2016). PISA 2015 results (volume I): Excellence and equity in education. Paris: OECD Publishing.
Oh, P. S., & Oh, S. J. (2011). What teachers of science need to know about models: An overview. International Journal of Science Education, 33(8), 1109-1130.
Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
Park, S. I., Lee, G., & Kim, M. (2009). Do students benefit equally from interactive computer simulations regardless of prior knowledge levels? Computers & Education, 52(3), 649-655.
Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535-1554.
Paul, R. (1995). Socratic questioning and role-playing. Santa Rosa, CA: Foundation for Critical Thinking.
Pham, T. T. H., & Renshaw, P. (2013). How to enable Asian teachers to empower students to adopt student-centred learning. Australian Journal of Teacher Education, 38(11), 65-85.
Pierce, R., & Fox, J. (2012). Vodcasts and active-learning exercises in a “flipped classroom” model of a renal pharmacotherapy module. American Journal of Pharmaceutical Education, 76(10), 1-5.
Plass, J. L., Homer, B. D., & Hayward, E. O. (2009). Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 21(1), 31-61.
Porcaro, P. A., Jackson, D. E., McLaughlin, P. M., & O’Malley, C. J. (2016). Curriculum design of a flipped classroom to enhance haematology learning. Journal of Science Education and Technology, 25(3), 345-357.
Proserpio, L., & Magni, M. (2012). Teaching without the teacher? Building a learning environment through computer simulations. International Journal of Information Management, 32(2), 99-105.
Robinson, F. P. (1961). Effective study. New York, NY: Haper & Row.
Rui, Z., Lian-Rui, X., Rong-Zheng, Y., Jing, Z., Xue-Hong, W., & Chuan, Z. (2017). Friend or foe? Flipped classroom for undergraduate electrocardiogram learning: A randomized controlled study. BMC Medical Education, 17(1), 1-9.
Rutten, N., van der Veen, J. T., & van Joolingen, W. R. (2015). Inquiry-based whole-class teaching with computer simulations in physics. International Journal of Science Education, 37(8), 1225-1245.
Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153.
Sampson, V., Enderle, P., Grooms, J., & Witte, S. (2013). Writing to learn by learning to write during the school science laboratory: Helping middle and high school students develop argumentative writing skills as they learn core ideas. Science Education, 97(5), 643-670.
Sampson, V., & Gleim, L. (2009). Argument-driven inquiry to promote the understanding of important concepts & practices in biology. The American biology teacher, 71(8), 465-472.
Sampson, V., Grooms, J., & Walker, J. (2009). Argument-driven inquiry: A way to promote learning during laboratory activities. The Science Teacher, 76(8), 42-47.
Sampson, V., Grooms, J., & Walker, J. P. (2011). Argument-Driven Inquiry as a way to help students learn how to participate in scientific argumentation and craft written arguments: An exploratory study. Science Education, 95(2), 217-257.
Sandoval, W. A., & Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88(3), 345-372.
Santeusanio, R. P. (1990). Content area reading and study. In C. Hedley, J. Houtz, & A. Barata (Eds.), Cognition, curriculum, and literacy (pp. 105-118). Norwood, NJ: Ablex.
Sarantos, P. (2016). Inquiry based-computational experiment, acquisition of threshold concepts and argumentation in science and mathematics education. Journal of Educational Technology & Society, 19(3), 282-293.
Schmid, R. F., Bernard, R. M., Borokhovski, E., Tamim, R. M., Abrami, P. C., Surkes, M. A., Wade. C. A., Woods, J. (2014). The effects of technology use in postsecondary education: A meta-analysis of classroom applications. Computers & Education, 72(0), 271-291.
Shegog, R., Lazarus, M. M., Murray, N. G., Diamond, P. M., Sessions, N., & Zsigmond, E. (2012). Virtual transgenics: Using a molecular biology simulation to impact student academic achievement and attitudes. Research in Science Education, 42(5), 875-890.
Shepherd, I. A., Kelly, C. M., Skene, F. M., & White, K. T. (2007). Enhancing graduate nurses’ health assessment knowledge and skills using low-fidelity adult human simulation. Simulation in Healthcare, 2(1), 16-24.
Simpson, J. A., & Weiner, E. S. (1989). The Oxford english dictionary (Vol. 2). Oxford: Clarendon Press
Sletten, S. R. (2017). Investigating flipped learning: Student self-regulated learning, perceptions, and achievement in an introductory biology course. Journal of Science Education and Technology, 26(3), 347-358.
Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
Smetana, L. K., & Bell, R. L. (2013). Which setting to choose: Comparison of whole-class vs. small-group computer simulation use. Journal of Science Education and Technology, 1-15.
Smith, B. E., Kiili, C., & Kauppinen, M. (2016). Transmediating argumentation: Students composing across written essays and digital videos in higher education. Computers & Education, 102, 138-151.
Staker, H., & Horn, M. (2012). Classifying K-12 blended learning. Retrieved from http://files.eric.ed.gov/fulltext/ED535180.pdf
Stephens, A. L., & Clement, J. J. (2015). Use of physics simulations in whole class and small group settings: Comparative case studies. Computers & Education, 86, 137-156.
Strayer, J. F. (2012). How learning in an inverted classroom influences cooperation, innovation and task orientation. Learning environments research, 15(2), 171-193.
Subari, K. (2017). Improving understanding and reducing matriculation students’ misconceptions in immunity using the flipped classroom approach. In M. Karpudewan, A. N. Md Zain, & A. L. Chandrasegaran (Eds.), Overcoming students' misconceptions in science: Strategies and perspectives from Malaysia (pp. 265-282). Singapore: Springer Singapore.
Tawfik, A., & Lilly, C. (2015). Using a flipped classroom approach to support problem-based learning. Technology, Knowledge and Learning, 20(3), 299-315.
Thai, N. T. T., De Wever, B., & Valcke, M. (2017). The impact of a flipped classroom design on learning performance in higher education: Looking for the best “blend” of lectures and guiding questions with feedback. Computers & Education, 107, 113-126.
Tomory, A., & Watson, S. L. (2015). Flipped classrooms for advanced science courses. Journal of Science Education and Technology, 24(6), 875-887.
Toothaker, L. E. (1993). Multiple Comparison Procedures. Newbury Park, CA: Sage Publications.
Touchton, M. (2015). Flipping the classroom and student performance in advanced statistics: Evidence from a quasi-experiment. Journal of Political Science Education, 11(1), 28-44.
Toulmin, S. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.
Treagust, D. F., & Tsui, C. Y. (2013). Multiple representations in biological education. Dordrecht, The Netherlands: Springer.
Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54(4), 1078-1088.
Tsai, C.-Y., Lin, C.-N., Shih, W.-L., & Wu, P.-L. (2015). The effect of online argumentation upon students' pseudoscientific beliefs. Computers & Education, 80, 187-197.
Tsai, P. S., Tsai, C. C., & Hwang, G. J. (2012). Developing a survey for assessing preferences in constructivist context‐aware ubiquitous learning environments. Journal of Computer Assisted Learning, 28(3), 250-264.
Tsovaltzi, D., Puhl, T., Judele, R., & Weinberger, A. (2014). Group awareness support and argumentation scripts for individual preparation of arguments in Facebook. Computers & Education, 76, 108-118.
Tsui, C.-Y., & Treagust, D. F. (2004). Motivational aspects of learning genetics with interactive multimedia. The American biology teacher, 66(4), 277-285.
Tsui, C.-Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students' conceptual status. Journal of Research in Science Teaching, 44(2), 205-235.
Tsui, C. Y., & Treagust, D. F. (2003). Genetics reasoning with multiple external representations. Research in Science Education, 33(1), 111-135.
Vogel, J. J., Vogel, D. S., Cannon-Bowers, J., Bowers, C. A., Muse, K., & Wright, M. (2006). Computer gaming and interactive simulations for learning: A meta-analysis. Journal of Educational Computing Research, 34(3), 229-243.
Voss, J. F., & Van Dyke, J. A. (2001). Argumentation in psychology: Background comments. Discourse Processes, 32(2-3), 89-111.
Wagner, D., Laforge, P., & Cripps, D. (2013). Lecture material retention: A first trial report on flipped classroom strategies in electronic systems engineering at the University of Regina. Paper presented at the Canadian Engineering Education Association Conference, Montreal, Canada.
Walker, J. P., & Sampson, V. (2013). Learning to argue and arguing to learn: Argument-driven inquiry as a way to help undergraduate chemistry students learn how to construct arguments and engage in argumentation during a laboratory course. Journal of Research in Science Teaching, 50(5), 561-596.
Walker, J. P., Sampson, V., & Zimmerman, C. O. (2011). Argument-driven inquiry: An introduction to a new instructional model for use in undergraduate chemistry labs. Journal of Chemical Education, 88(8), 1048-1056.
Wang, J., Guo, D., & Jou, M. (2015). A study on the effects of model-based inquiry pedagogy on students’ inquiry skills in a virtual physics lab. Computers in Human Behavior, 49, 658-669.
Wanner, T., & Palmer, E. (2015). Personalising learning: Exploring student and teacher perceptions about flexible learning and assessment in a flipped university course. Computers & Education, 88, 354-369.
Wecker, C., & Fischer, F. (2014). Where is the evidence? A meta-analysis on the role of argumentation for the acquisition of domain-specific knowledge in computer-supported collaborative learning. Computers & Education, 75, 218-228.
Weinberger, A., & Fischer, F. (2006). A framework to analyze argumentative knowledge construction in computer-supported collaborative learning. Computers & Education, 46(1), 71-95.
Wilcox, R. R. (1987). New designs in analysis of variance. Annual Review of Psychology, 38(1), 29-60.
Williams, M., DeBarger, A. H., Montgomery, B. L., Zhou, X., & Tate, E. (2012). Exploring middle school students' conceptions of the relationship between genetic inheritance and cell division. Science Education, 96(1), 78-103.
Wilson, S. G. (2013). The flipped class. Teaching of Psychology, 40(3), 193-199.
Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941-967.
Winters, F. I., & Azevedo, R. (2005). High-school students' regulation of learning during computer-based science inquiry. Journal of Educational Computing Research, 33(2), 189-217.
Wong, T. H., Ip, E. J., Lopes, I., & Rajagopalan, V. (2014). Pharmacy students’ performance and perceptions in a flipped teaching pilot on cardiac arrhythmias. American Journal of Pharmaceutical Education, 78(10), 185.
Wray, D., & Lewis, M. (1997). Extending literacy: Children reading and writing non-fiction. London, England: Routledge.
Wu, H. K., & Huang, Y. L. (2007). Ninth-grade student engagement in teacher-centered and student-centered technology-enhanced learning environments. Science Education, 91(5), 727-749.
Yang, F.-Y., & Chang, C.-C. (2009). Examining high-school students’ preferences toward learning environments, personal beliefs and concept learning in web-based contexts. Computers & Education, 52(4), 848-857.
Yarbro, J., Arfstrom, K. M., McKnight, K., & McKnight, P. (2014). Extension of a review of flipped learning. Retrieved from http://flippedlearning.org/wp-content/uploads/2016/07/Extension-of-FLipped-Learning-LIt-Review-June-2014.pdf
Zacharia, Z., & Anderson, O. R. (2003). The effects of an interactive computer-based simulation prior to performing a laboratory inquiry-based experiment on students’ conceptual understanding of physics. American Journal of Physics, 71(6), 618-629.
Ziden, A. A., & Abdul Rahman, M. F. (2013). The effectiveness of web-based multimedia applications simulation in teaching and learning. International Journal of Instruction, 6(2), 211-222.
Zohar, A., & Nemet, F. (2002). Fostering students' knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE