:::

詳目顯示

回上一頁
題名:U化問題導向合作探究學習模式的發展與應用-國小學生科學提問能力進展特徵之探討
作者:吳宗勳
作者(外文):Tsung-husn Wu
校院名稱:國立臺南大學
系所名稱:教育經營與管理研究所博士班
指導教授:洪碧霞
學位類別:博士
出版日期:2012
主題關鍵詞:U化學習模式科學探究素養科學提問能力學習成長實驗效益scientific-questioning abilityscientific inquiry literacyubiquitous-learning modelintervention effectlearning growth
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:43
U化合作探究學習融合探究學習及資訊科技的優勢,為國小科學教育開啟兼顧引導與自主探究的重要契機。本研究以合作學習為取向,希望藉由系統化鷹架引導學生主動提出並循序精進問題。研究中發展U化問題導向合作探究學習模式(Ubiquitous Problem-based Cooperative Inquiry-learning system, UPCIS),支持學生將探究問題從自發的感興趣問題轉化為可回答問題,最後發展成科學性問題。為了量化學生科學提問能力的進展,研究中發展科學提問能力實作評量(scientific-questioning performance assessment, SQPA),將學生問題互動的網路發言分為主動提問、協助他人提問、主動修正問題、協助他人修正問題四個層面,敦促並監控學生的互動,探討學生提問能力的進展。
本研究以網站OTELOS2010~1為U化學習環境,學習活動分單組和準實驗設計,依序在兩個年度進行。第一年以59名國小學生為研究樣本,包含經驗組6名、生手組53名(普通生26名、資優生27名),共同進行跨校U化問題導向合作探究學習活動,進行三次電腦化科學探究素養測驗、科學提問實作評量,主要目的在發展U化問題導向合作探究學習模式並檢驗學生的學習成長。為更嚴謹的推論介入效益,第二年採準實驗研究設計,以78名國小學生為研究樣本,實驗組43名(經驗學習組25名、生手學習組18名)、控制組35名。實驗組進行跨校U化問題導向合作探究學習活動,控制組則進行一般問題導向合作探究學習活動,所有學生都進行三次電腦化科學探究素養測驗、和科學提問實作評量。
研究結果顯示學生在U化合作探究學習的探究問題進展呼應本研究所提出的探究問題發展模式,所有參與活動學生的探究問題均發展達到科學性問題的層次,顯示探究問題的循序發展模式的適用性,且探究問題發展具有不可逆性。就介入效益而言,模式中的鷹架有效提升學生的科學探究素養,單組實驗介入後,學生科學探究素養顯著高於常模樣本。進一步檢驗準實驗設計的介入效益,實驗組學生科學探究素養的成長斜率顯著高於控制組,實驗介入組別變項的可解釋斜率變異量(R2)為20.61%。就不同經驗組別而言,經驗組顯著優於生手組,對於科學探究素養斜率的解釋變異量(R2)為15.15%。以學習者能力而言,資優學生表現顯著高於一般學生,能力組別變項的可解釋成長變異量(R 2)為18.32%。
研究中針對實驗組學生合作討論的網路發言記錄進行提問能力評定,學生科學提問能力成長與科學探究素養成長相關是0.68,與在校成績間的相關係數介於0.55~0.65,呈現合理的區辨與輻合效度。實驗組學生科學提問能力呈現顯著成長,以經驗別而言,經驗組提問能力成長顯著優於生手組,經驗組別解釋提問能力成長斜率變異量為(R 2)為9.36%。以學習者能力別而言,資優學生提問能力的成長顯著高於一般學生,能力組別可解釋提問能力成長斜率變異量(R 2)為26.32%。
本研究提出三點結論(1)UPCIS合理適切,透過循序而系統的鷹架引導,可有效協助學生將問題從直覺得有趣問題轉化為可回答問題,並進階發展成科學性問題。(2)UPCIS)兼顧PBL的探究學習理念、合作學習取向及資訊通訊科技的特色,經實驗研究檢驗證實對學生的科學探究素養具有協助效益,值得推廣。(3)本研究發展的U化問題導向合作科學提問能力實作評分規範信、效度合理適切,可提供網路合作學習經營的研究與實務參考。
Through integrating advantages of inquiry-learning and information technology, ubiquitous cooperative inquiry-learning offers opportunities for applications of guided and self-directed inquiry in elementary science education. Based on cooperative learning, systematic scaffolding was designed to assist students in actively proposing and refining their questions. In this study, a Ubiquitous Problem-based Cooperative Inquiry-learning System (UPCIS) was developed to support students to transform intuitive problems to workable problems, and to refine those as scientific ones in the end. In order to measure the progress of students'' scientific-questioning ability, a Scientific-Questioning Performance Assessment (SQPA) was developed to classified the students’ online dialogues as four levels of “positive question posing,” “assistance in question posing,” “positive question correcting” and “assistance in question correcting”, and so as to monitor and stimulate their interaction.
The website OTELOS2011 was used as the ubiquitous leaning environment in this study. Learning activities including one-group experimental design and quasi-experimental design were sequentially conducted during two years. In the first year, 59 elementary school students, including 6 experienced learners and 53 novice learners (26 average students and 27 talented students), were engaged in ubiquitous problem-based cooperative inquiry-learning activities across three schools. Three computerized scientific inquiry literacy assessments and a scientific-questioning performance assessment were also applied. The purpose of this stage was to develop the model of UPCIS and evaluate the inquiry ability growth of students as well.
A quasi-experimental design was further used in the second year to rigorously examine the intervention effect on inquiry ability in UPCIS. Seventy-eight students from elementary schools were included. There were 43 students assigned to the experimental groups (25 experienced learners and 18 novice learners) and 35 students in the control groups. The experimental groups were engaged in cross-school activities on UPCIS, while the control groups were working with regular activities in the traditional classroom. All of them took three computerized scientific inquiry literacy assessments and a scientific-questioning performance assessment.
The results suggested that the students’ learning progress was relevant to the model of UPCIS proposed in this study. In total of thirty groups of novice learners (59.1%) and ten groups of experimental learners (100%) achieved the scientific-problem inquiry level, which indicated the applicability of UPCIS. It was also found that the systematic scaffolding effectively enhanced students’ scientific inquiry skill after the intervention. The students of the experimental groups from one-group experimental design significantly surpassed the normal samples in computerized scientific inquiry literacy assessment. The results indicated that the on-line scientific inquiry abilities of the experimental groups on the post-test were significant better than the control groups (9% variances accounted by group variable).
Furthermore, the growth slopes of the experimental groups for on-line science inquiry literacy were higher than those of the control groups (21% variances accounted by group variable). With regard to learning experience, the growth slopes of the experienced learners were better than the novice learners (15% variances accounted by learning experience variable). The gifted students showed higher learning abilities than the average students (18% variances accounted by leaner ability variable). The scientific-questioning abilities of students in the experimental groups were evaluated according to their on-line discussion records. The correlation coefficient between students'' scientific-questioning abilities and scientific inquiry literacy was around .68, and ranged from .55 and .65 for school grades. Thus, the discriminant and convergent validity of SQPA were supported by the result. The students of the experimental groups demonstrated a significant progress in their scientific-questioning abilities. In terms of the experience groups, the scientific-questioning abilities of the experienced learners were better than those of the novice learners. The leaning experience of students explained 9% growth slope variance of question-posing ability. In terms of learners'' ability, the growth of the gifted students on question-posing ability was question-posing ability was accounted by the learner’s ability.
Three conclusions can be drawn from the results. 1) Through the provision of progressive guidance and systematic scaffold, UPCIS is relevant to help students transform intuitive questions into workable questions, and further evolves into scientific questions. 2) By integrating inquiry learning, cooperative learning and information and communication technologies into such a unified learning system, UPCIS is applicable and helpful to improve students'' scientific inquiry literacy. 3) The SQPA can efficiently detect the progress of students on scientific inquiry ability. Meanwhile the scoring rubrics of SQPA are reliable and valid, thus the SQPA can provide more informative feedbacks for teachers to fulfill the practices of ubiquitous cooperative learning.
一、中文文獻
王瑞壎(2002)。OECD組織PISA評量對國小數學與科學教育之啟示。科學教育研究與發展,27,39-55。
王佩蓮、陳錦雪(1994)。探討國民小學各科教材中環境教育問題,市師科學教育季刊,19,13-295。
毛連塭(1995)。資優教育:課程與教學。臺北市:五南。
台江國家公園管理處(2012)。自然與人文保育-自然資源。民國101年6月1日。線上資料:取自http://www.tjnp.gov.tw/chinese/#&Itemid=37
朱耀明(2003)。自我導向學習在行動學習設計上的啟示。高雄師範大學舉辦之「WISCS2003網路教學系統與內容標準化」學術研討會論文集,136-141,高雄市:高雄師範大學。
吳百興、張耀云、吳心楷(2010)。科學探究活動中的科學推理。科學教育研究與發展季刊,56,53-74。
吳宗霖(2008)。運用專題導向學習策略與無所不在學習環境於國小六年級生態環境教育之行動研究。國立屏東教育大學教育科技研究所碩士論文,未出版。
吳宗勳(2009)。自然科專題學習的回饋性評量對學習動機與學習表現之歷程分析。載於南台灣2009年教育論壇研討會論文集(195-220),高雄市:中山大學。
吳虹毅(2009)。國立台南大學七股校區-七股校區鳥類圖鑑。臺南市:臺南大學。
吳鐵雄,洪碧霞(2001)。國小學生網路支援合作式專題學習經營。師生與家長研習會學生學習成果發表手冊,7-11。
李弘善(2000)譯。(Sternberg, R. J. & Spear-Swerling, L.原著)。思考教學。台北:遠流。
李明昆(2010)。國三學生的科學問題提問與研究問題選擇判準之研究。高雄師範大學科學教育研究所博士論文,未出版。
李明昆、洪振方(2011)。九年級學生探究性科學問題提問與問題發展型態之個案研究。科學教育研究與發展季刊,61,51-80。
李榮祥(2001)。台灣賞蟹情報。台北:遠足文化事業。
李偉俊(1996)。未來資優教育的新指標:獨立研究方案(ISP)。國教之聲,30(1),18-29。
林大正、陳宗禧(2007)情境感知行動學習環境下數位教材內容設計之研究。資訊教育與科技應用研討會(IETA2007),台中:台中教育大學。new window
林建仲、鄭宗文(2001)。合作式學習與問題解決-培養以問題解決為中心的網路合作學習。資訊與教育雜誌,85,55-62。
林達森(2002)合作學習在九年一貫課程的應用。教育研究資訊,10(2),87-103。new window
林素微、洪碧霞、林世華(2004)。國小高年級電腦化數感動態評量發展之探討。發表於科技化測驗與能力指標評量國際學術研討會,台南市:國立台南師範學院。
林郁雰(2009)。U化生態觀察動態評量之發展。國立台南大學測驗統計研究所碩士論文,未出版。
周裕欽(2009)。反省探究學習模式之建立及其應用。國立東華大學國民教育研究所博士論文,未出版。
邱美虹(2000):概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。new window
邱瓊慧、陳煥彬、魏來成、胡馨文、喬祺、李建樹(2006)。網路合作學習環境之研究。2012年6月1日。線上資料:取自http://acbe.tku.edu.tw/iccai8/59/59.htm
洪小婷(2011)。U化生態觀察活動中學生知識結構改變特徵之探討。國立台南大學測驗統計研究所碩士論文,未出版。
洪正中、吳天基、杜正榮(1996)。環境生態學。台北;國立空中大學。
洪碧霞、陳沅(2001)。數學專題學習日誌的評量理念與應用示例。台灣教育,604,15-24。
柯麗卿(2004)。國中資優生獨立研究與學習風格的關係及獨立研究學習成效相關因素之研究。資優教育研究,4(2),43-64。
徐慶宏、林惠文(2007)。創新地圖教學—社區綠活圖課程的實踐。「全球化衝擊下的課程與教學」學術研究研討會暨中華民國課程與教學學會第十六屆課程與教學論壇研討會,新竹:新竹教育大學。
教育部(2002)。全國第一次科學教育會議資料。台北:行政院教育部。
教育部(2003)。國民中小學九年一貫課程總綱綱要。台北:行政院教育部。new window
許育彰(1998)。探討高中生從力學情境中發現問題的能力之研究。國立臺灣師new window
範大學科學教育研究所博士論文,未出版。
張玉成(1999)。教師發問技巧之外-論鼓勵學生發問暨教師回答技巧之重要性。國民教育,39(3),47-53。
莊玉珍、王惠芳(2001)。台灣的濕地。台北:遠足文化事業。
莊豐謙(2010)。資優學生U化生態觀察學習進展特徵之探討。國立台南大學測驗統計研究所碩士論文,未出版。
郭智勇(2001)。台灣紅樹林自然導遊。台北:遠足文化事業。
陳沅,黃方鳴,洪碧霞(2001)。數學合作式專題學習的評量設計與應用。華人社會心理與教育測驗研討會。
陳景蔚(2006)。無所不在的運算環境與進化中的行動學習。國立嘉義大學通識學報,4,17-45。
黃朝恩(1994)。地理科戶外環境教學之實驗研究。師大地理研究報告,21,173-201。new window
黃國禎、黃淑賢、吳婷婷、楊子奇(2007)。情境感知無所不在學習環境之動態評量模式。2007行動與無所不在數位學習研討會。台北市:國立台灣師範大學。
楊龍立(1997a)。建構主義教學的檢討。現代教育論壇,3,62-68。new window
楊龍立(1997b)。建構主義評析─在課程設計上的啟示。台北市立師範學院學報,28,41-56。
楊龍立(1998)。建構教學的研究。臺北市立師範學院學報,29,21-37。
熊召弟、王美芬、段曉林和熊同鑫(1996)。科學學習心理學。台北:心理。
鄭瑛珍(民88)。物理學家問題發現與問題解決之個案研究。國立台灣師範大學科學教育研究所碩士論文,未出版。
顏弘志(2001)。建構主義取向教學的實踐-一位國小自然科教師教學信念與和科教學知識的改變。國立花蓮師範學院國小科學教育研究所碩士論文,未出版。new window
顏弘志(2004):從建構主義看探究教學。科學教育研究與發展,36,1-14。
蘇明俊、江新合(2002)。野外科學探究教學模式之初探性研究-以小尖石山的地質探究爲例。教育科學期刊,2(2),62-96。new window
謝宗欣(2009)。國立台南大學七股校區-植物圖鑑。臺南市:臺南大學。
















二、英文文獻
AAAS (1990). Science for all Americans: Project 2061. New York: Oxford University Press.
Abd-El-Khalick, F., Bell, R. L., & Lederman, N. G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82, 417-436.
Alae, D. (1974). "Asking operational questions." Science and Children, 11(17), 18-19.
Allison, A.W., & Shrigley, R.L. (1986). "Teaching children to ask operational questions in science." Science Education, 70(1), 73-80.
Anderson, J. R., Boyle, C. F., & Reiser, B. J. (1985). Intelligent tutoring systems. Science, 228, 456–462.
Anderson, J. R., Reder, L. M., &; Simon, H. A. (1996). Situated learning and education. American Educational Research Journal, 25(4), 5-11.
Arlin, P. K. (1975). A cognitive process model of problem finding. Educational Horizons, 54, 99-106.
Biddulph, F., & Osborne, R. (1982). "Some issues relating to children''s questions and explanations". LISP(P) Working Paper No. 106, University of Waikato, New Zealand.
Biddulph, F., Symington, D., & Osborne, R. (1986). "The place of children''s questions in primary science education." Research in Science and Technological Education, 4(1), 77-88.
Biological Science Curriculum Study. (2012). As BSCS begins its 50th anniversary celebration (1958-2008). Retrieved July 1, 2012 from http://www.bscs.org/50th
Bredderman, T. (1981). Elementary school process curricula: A meta-analysis. (ERIC Document Reproduction Service No. ED170-333).
Bruner, J. S. (1960).The Process of education. Cambridge. MA: Harvard University Press.
Bruner, J. S. (1960)/陳伯璋、陳伯達譯(1995)。教育的過程。台北:世界文藝出版社。
Bruner, J.S.(1966). Studies in Congnitive Growth. New York: Wiley.
Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.
Checkovich, B. H. & Sterling, D. R. (2001). Oh Say Can You See. Science and Children,38(4), 32-35.
Chen, Y. S., Kao, T. C., & Sheu, J. P. (2003). A mobile learning system for scaffolding bird watching learning. Journal of Computer Assisted Learning, 19(3), 347-359.
Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152.
Chin, C., & Brown, D.E. (2000). "Learning deeply in science: An analysis and reintegration of deep approaches in two case studies of grade 8 students." Research in Science Education, 30(2), 173-197.
Chin, C. (2002) ‘Student-Generated Questions: Encouraging Inquisitive Minds in Learning Science’, Teaching and Learning, 23(1), 59–67.
Chu, H. C., Hwang, G. J., Huang, S. X., & Wu, T. T. (2008). A knowledge engineering approach to developing e-libraries for mobile learning. Electronic Library, 26, 3, 303–317.
Colbert, J. T., Olson, J. K., and Clough, M. P. (2007) ‘Using the Web to Encourage Student-generated Questions in Large-Format Introductory Biology Classes’, CBE Life Science Education, 6(1), 42-48.
Costenson, K & Lawson A.E. (1986). Why isn’t inquiry used in more classrooms? The American Biology Teacher, 48, 150-158.
Delisle, R. (1997). How to use problem-based learning in the classroom. Association
for Supervision and Curriculum Development
Dewey, J. (1933). How we think. New York:Buffalo Press.
Dewey, J. (1938). Experience and education. New York: Macmillan.
Dori, Y.J., & Herscovitz, 0. (1999). "Question-posing capability as an alternative evaluation method: Analysis of an environmental case study." Journal of Research in Science Teaching, 36(4), 411-430.
Einstein, A. & Infeld, L. (1938). The evolution of physics. New York: Simon and Schuster, Inc.
El-Nemr, M.A. (1979). Meta-analysis of the outcomes of teaching biology as inquiry. Boulder, CO: University of Colorado.
Elstgeest, J. (1985). "The right question at the right time," in W. Harlen (Ed.), Primary Science: Taking the Plunge (pp. 3646). London: Heinemann.
Falk, J.H. (2005). Free choice environmental learning: framing the discussion. Environmental Education Research, 11(3), 265-280.
Flick, L. B., & Lederman, N. G. (2002). The value of teaching reading in the context of science and mathematics. School Science & Mathematics, 102(3), 105-106.
Folsom, J., Hunt, C., Cavicchio, M., Schoenemann, A., & D''Amato, M. (2008). Readings in Science Methods, K-8: In E. Brunsell. (Ed.), Section 2:How Do You Know That? (pp. 107-113). National Science Teachers Association.
Getzels, J. W., & Csikszentmihalyi, M. (1976). The creative vision: A longitudinal study of problem finding in Art. New York: John Wiley & Sons.
Getzels, J. W. (1979). ‘Problem-finding and research in educational administration’, In G. Immegart & W. L. Boyd (Eds.), Problem-finding in educational administration: Trends in research and theory, Canada: DC Heath & Co.
Han, J. (1995). The quest for national standards in science education in Korea. Studies in Science Education, 26, 59-71.
Herron, M.D. (1971). The nature of scientific enquiry. The School Review, 79, 171-212
Hoover, S. M., & Feldhusen, J. F. (1990). The scientific hypothesis formulation ability of gifted ninth-grade students. Journal of Educational Psychology, 82, 838-848.
Hoover, S. M., & Feldhusen J. F. (1994). Scientific problem solving and problem finding: A theoretical model. In M. A. Runco (Ed.), Problem finding, problem solving, and creativity (201-219). Norwood, NJ: Ablex.
Hung, C. M., Hwang, G. J., & Huang, I. (in press). A Project-based digital storytelling approach to improving students’ learning motivation, problem-solving competence and learning achievement. Educational Technology & Society.
Hung, P. H., Hwan, G. J., Lin, Y. F., & Kuo, P. H. (2009, September). The Effect of a PDA Integrated Formative Assessment Design. Paper presented at the 6th International Workshop on Mobile and Ubiquitous Learning Environments (MULE 2009), Athabasca University, Canada
Hung, P. H., Hwang, G. J., Su, I. H., & Chuang, F. C. (2010, September). The Effects of a Concept Map Integrated Mobile Learning Design for Ecology Observation. Paper presented at the Asia-Pacific Conference on Technology Enhanced Learning 2010 (APTEL2010), Kansai University, Osaka, Japan.
Hung, P. H., Hwang, G. J., & Hung, X. T. (2010, September). A Concept Map Embedded Formative Assessment Design for Assessing Students'' Knowledge Structure in a Mobile Ecology Learning Environment. Paper presented at the Asia-Pacific Conference on Technology Enhanced Learning 2010 (APTEL2010), Kansai University, Osaka, Japan.
Hung, P. H., Hwang, G. J., & Lin, I. H. (2010, September). The Implications of cognitive component analysis to the Computerized Ecology Observation Competence Assessment for Mobile Learning Design. Paper presented at the Asia-Pacific Conference on Technology Enhanced Learning 2010 (APTEL2010), Kansai University, Osaka, Japan.
Hung, P. H., Lin, Y. F., & Hwang, G. J. (2010). Formative Assessment Design for PDA Integrated Ecology Observation. Educational Technology & Society, 13(3), 33-42. (ISSN 1436-4522) (SSCI) 計畫編號:NSC 98-2631-S-024-001.
Hung, P. H., Hwang, G. J., Lin, I. H., & Hung, X. T. (2010). The development of a computerized ecology observation competence assessment. Advanced Materials Research Vols 108-111, 860-865. (ISSN 1022-6680) (EI)
Hung, P. H., Hwang, G. J., Lee, Y. H., & Wu T. H. (2011, August). The problem refining progress for the 5th graders'' ubiquitous inquiry. Paper presented at Asia-Pacific Conference on Technology Enhanced Learning 2011 (APTEL 2011), Xi''An, China.
Hung, P. H., Hwang, G. J., Lin, I. H., & Su I. H. (2011, August). The characteristics of gifted students’ ecology inquiries in ubiquitous learning activities. Paper presented at Asia-Pacific Conference on Technology Enhanced Learning 2011 (APTEL 2011), Xi''An, China.
Hung, P. H., Hwang, G. J., Lee, Y.H., & Wu, T.H. (2011). The problem-refining progress of 5th graders'' ubiquitous inquiry. International Journal of Mobile Learning and Organisation, 5(3/4), 255-267. (ISSN 1746-725X) 計畫編號:NSC 99-2631-S-011-002.
Hung, P. H., Hwang, G. J., Su, I. H., & Lin, I. H. (2012). A concept-map integrated dynamic assessment system for improving ecology observation competences in mobile learning activities. Turkish Online Journal of Educational Technology, 11(1), 10-19. (ISSN 2146-7242) (SSCI) 計畫編號:NSC 99-2631-S-011-002.
Hung, P. H., Hwang, G. J., Lin, Y. F., Wu, T. H., & Su, I. H. (in press). Seamless Connection between Learning and Assessment- Applying Progressive Learning Tasks in Mobile Ecology Inquiry. Educational Technology & Society. (ISSN 1436-4522) (SSCI) 計畫編號:NSC 99-2511-S-011-011-MY3, NSC 100-2631-S-011-003.
Hwang, G. J., Wu, T. T. & Chen, Y. J. (2007). Ubiquitous computing technologies in education. Journal of Distance Education Technology, 5(4), 1-4.
Hwang, G. J., Tsai, C.C., & Yang, S. J. H. (2008). Criteria, strategies and research issues of context-aware ubiquitous Learning. Educational Technology &; Society, 11 (2), 81-91.
Hwang, G. J., Yang, T. C., Tsai, C. C., & Yang, Stephen J. H. (2009). A context-aware ubiquitous learning environment for conducting complex experimental procedures. Computers & Education, 53, 402-413.
Hwang, G.. J., Chu, H. C., Shih, J. L., Huang, S.-H., & Tsai, C.-C. (2010). A decision-tree-oriented guidance mechanism for conducting nature science observation activities in a context-aware ubiquitous learning environment. Educational Technology & Society, 13 (2), 53–64.
Hwang, G. J., Kuo, F. R., Yin, P. Y., & Chuang, K. H. (2010). A heuristic algorithm for planning personalized learning paths for context-aware ubiquitous learning. Computers & Education, 54, 404-415.
Hwang, G. J., Hung, P. H., Shih, J. L., & Chu, H. C. (2010, September). Development of Mindtools and Learning Strategies for Ubiquitous Learning- a National e-learning Project in Taiwan. Paper presented at the Asia-Pacific Conference on Technology Enhanced Learning 2010 (APTEL2010), Kansai University, Osaka, Japan.
Jay, E. S., & Perkins, D. N. (1997). Problem finding:the search for mechanism. In M.A. Runco (Ed.), The creativity research handbook (257-293). Cresskill, NJ: Hampton .
Jelly, S. (1985). "Helping children raise questions - and answering them," in W. Harlen (Ed.), Prima y Science: Taking the Plunge ( 47-57). London: Heinemann.
Jonassen, D. H. (1996). Computers in the classroom. Mindtools for critical thinking. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.
Joyce, B., Weil, M, & Calhoun, E. (2004). Models of teaching. Boston: Allyn and Bacon.
Junior Science and Humanities Symposium. (2007). What is JSHS? Retrieved November 01,2011 from http://www.jshs.org/about.html
Kay, S. (1994). From theory to practice: Promoting problem-finding behavior in children. Roeper Review, 16, 195-197.
Keys, C.W. (1998). "A study of grade six students generating questions and plans for open-ended science investigations." Research in Science Education, 28(3), 301-316.
Kim, M., & Hannafin, M., (2004). Designing online learning environment to support scientific inquiry. The Quarterly Review of Distance Education, 5(1), 1-10.
King, A. (1994). "Guiding knowledge construction in the classroom: Effects of teaching children how to question and how to explain." American Educational Research Journal, 31(2), 338-368.
Kirschner, P., Sweller, J. & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational psychology, 41(2), 75-86.
Krajcik, J. S., Czerniak, C. M. & Berger, C. (1999). Teaching children science: A project-based approach. McGraw-Hill College.
Kuo, F. R., Hwang, G. J., & Lee, C. C. (2012). A hybrid approach to promoting students’ web-based problem solving competence and learning attitude. Computers & Education, 58(1) , 351-364.
Kuo, F. R., Hwang, G. J., Chen, S. C., & Chen, Sherry Y. (in press). A cognitive apprenticeship approach to facilitating web-based collaborative problem solving. Educational Technology & Society.
Kynaslahti, H.(2003). In Search of Elements of Mobility in the Context of Education. In Mobile Learning (eds. H. Kynaslahti & P. Seppala). (41-48). IT Press, Helsinki.
LaBanca, F. (2007a). The Connecticut Science Fair: impressions of sixty years of innovation. Connecticut Journal of Science Education, 45, 14-18.
LaBanca, F. (2007b). Impact of problem finding on the quality of authentic open inquiry science research projects. (Unpublished doctoral dissertation, Western Connecticut State University, Danbury, CT)
LaBanca, F. (2012). The Creative Process of Problem Finding Manifested in Open Inquiry http://problemfinding.labanca.net/wp-content/uploads/2012/01/LaBanca-TQR-2012.pdf
Lederman, N. G., & Flick, L. B. (2002). Consensus in curriculum development: Let’s agree to disagree. School Science and Mathematics, 102(2), 53-56.
Lee, C. I., Hsieh, Y. C., & Hwang, G. J. (2012). A study of an inquiry-based learning approach on college students’ online problem-solving abilities. International Journal on Digital Learning Technology, 3(4).
Lin, Y. F., Wu, T. H., Hung, P. H., Hwang, G. J., & Yeh, Y. F. (2009, December). A Cognitive Load-based Framework for Integrating PDAs into Outdoor Observations. Paper presented at the meeting of the 17th International Conference on Computers in Education (ICCE2009), Hong Kong, China.
Magnussen, L., D, Ishida,, & J. Itano.(2000).The impact of the use of inquiry-based learning as a teaching methodology on the development of critical thinking. Journal of Nursing Education,39(8):360-364.
Manconi, L, Aulls, M.W., & Shore, B.M. (2007). Teachers’ use and understanding of strategy in inquiry instruction. In B. M. Shore, M. W. Aulls, & M. A. B. Delcourt (Eds.), Inquiry in education volume II: Overcoming barriers to successful implementation. Mahwah, NJ: Erlbaum.
Manzanal, R. F., Barreiro, L. M. R., & Jimenez, M. C. (1999). Relationship between Ecology Fieldwork and Student Attitudes toward Environmental Protection. Journal of Research in science teaching, 36(4), 431-453.
Mao, S., & Chang, C. (1998). Impacts of an inquiry teaching method on Earth science students’ learning outcomes and attitudes at the secondary level. Proceedings of the National Science Council ROC (D), 8, 93-101.
Martin-Hansen, L. (2002). Defining inquiry. The Science Teacher, 69, 34-37.
Maskill, R., & Pedrosa de Jesus, H. (1997). "Pupils'' questions, alternative frameworks and the design of science teaching." International purnal of Science Education, 19(7), 781-799.
Mayer, R. E. (2002). A taxonomy for computer-based assessment of problem solving. Computer in Human Behavior, 18, 623-632.
Mayer R. E. (2002). Cognitive Theory and the Design of Multimedia Instruction: An Example of the Two-way Street Between Cognition and Instruction. New Directions for Teaching and Learning, 89,55-71.
Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. A. Alexander, & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed.). (287–304) New York: Macmillan.
Metz, K. E. (2000) ‘Young children''s inquiry in biology: Building the knowledge bases to empower independent inquiry’, In J. Minstrell & E. van Zee (Eds.), Inquiring into inquiry learning and teaching in science, Washington, DC: American Association for the Advancement of Science, (371-404).
National Committee on Science Education Standards and Assessment (NCSESA), (1992). National science education standards: A sampler. Washington, DC: National Research Council.
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council. (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academy Press.
Newtown High School. (2003). Graduation standards problem solving. Sandy Hook, CT: Newtown Public Schools.
Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving. Psychological Review, 65(3), 151–166.
OECD (2003). Measuring Student Knowledge and skills-The PISA 2003 Assessment of Reading, Mathematical, Scientific, and Problem Solving Literacy. OECD, Paris, France.
Osborne, R., & Wittrock, M. (1985). "The generative learning model and its implications for science education." Studies in Science Education, 12, 59-87.
Oxford High School. (2007). Oxford High School academic skill expectations. Oxford, CT: Oxford Public Schools.
Paas, F. G. W. C., & van Merriënboer, J. J. G. (1994). Variability of worked examples and transfer of coemetrical problem-solving skills: a cognitive-load approach. Journal of Educational Psychology, 86(1), 122–133.
Pea, R. D. (1985). Beyond amplification: using the computer to reorganize mental functioning. Educational Psychologist, 20(4), 167–182.
Pizzini, E.L. & Shepardson, D.P. (1991). "Student questioning in the presence of the teacher during problem solving in science." School Science and Mathematics, 91(8), 348-352.
Pownell, D. & Bailey, G.D. (2001) Getting a handle on handhelds: What to consider before you introduce handhelds into your schools. Electronic School.com. (June 1, 2001).
Prince, M. (2004) Does active learning work? A review of the research. Journal of Engineering Education, 93, 223-231.
Rebekah, K. N. (1998). Observation Skills: Hidden Pictures in the Intertidal Zone. Retrieved October 30, 2009, from http://www.utdallas.edu/~rnix/MAT-SE_Units/Hidden-Pictures/Hidden-Pictures.pdf
Renzulli, J.S. (1977). The enrichment triad model: A guide for developing defensible programs for the gifted and talented. Mansfield Center, CT: Creative Learning Press.
Rogers Y., Fraser D. S., & Fitzpatrick G.(2005). Ubi-learning integrates indoor and outdoor experiences. Communications of the ACM, 48(1), 55-59.
Runco, M. A., & Chand, I. (1994). Problem finding, evaluative thinking, and creativity. In M. A. Runco (Ed.), Problem finding, problem solving, and creativity (40-76). Norwood, NJ: Ablex Publishing Company.
Rutherford, J., & Ahlren, A. (1990). Science for All Americans. New York: Oxford University Press.
Salomon, G., Perkins, D. and Globerson, T. (1991). Partners in Cognition: Extending Human Intelligence with Intelligent Technologies. Educational Researcher, 20, 2-9.
Sharples, M. (2000). The design of personal mobile technologies for lifelong learning. Computer and education, 34, 177-193.
Shepardson, D. P., & Pizzini, E. L. (1991). Questioning Level of junior high school science textbooks and their implications for learning textual information. Science Education, 75(6), 673-682.
Shih, J. L., Chuang, C. W., & Hwang, G. J. (2010). An Inquiry-based Mobile Learning Approach to Enhancing Social Science Learning Effectiveness. Educational Technology & Society, 13 (4), 50–62.
Shymansky, J.A., Hedges, L.V., & Woodworth, G. (1990). A reassessment of effects of inquirybased science curriculum of the ’60s on student performance. Journal of Research in Science Teaching, 27, 127-144.
Shodell, M. (1995). "The question-driven classroom." The American Biology Teacher, 57(5), 278-281.
Sharples, M.(2000).The design of personal mobile technologies for lifelong learning. Computer and education, 34, 177-193.
Siu, K.W.M. (2001). What should be solved? The Korean Journal of Thinking and Problem Solving, 11(2), 9-22.
Slavin, R.E. (1985). An instruction to cooperative learning research. In Slavin, R.E. et al. (eds.)
Smith, D. (1996). A meta-analysis of student outcomes attributable to teaching science as inquiry as compared to traditional methodology. Unpublished doctoral dissertation, Temple University, Philadelphia.
Sockalingam, N. and Schmidt, H. G. (2011) ‘Characteristics of Problems for Problem-Based Learning: The Students’ Perspective’, The Interdisciplinary Journal of Problem-Based Learning, 5(1), 6-33.
Steffe, L. P. & Gale, J. (Eds.)(1995). Constructivism in education. Hillsdale. NJ:Lawrence Erlbaum Associates.
Symington, D.J. (1980). Scientific Problems Seen by Primary School Pupils. Unpublished Ph.D. thesis, Monash University, Australia.
Thacker,B. E., Kim, K. T., and Lea, S. M.(1994).Comparing problem solving performance of physics students in inquiry-based and traditional introductory physics course. American Journal of Physics,62(7),627-33.
Tisher, R.P. (1977). "Practical insights gained from Australian research on teaching." Australian Science Teachers Journal, 23(2), 99-104.
Trewbrjdge, J. E., & Wandersee, J. H. (1999).Observation Rubrics in Science assessment. In Mintzes, J. J., Wandersee, J. H., & Novak, J. D. (Eds.), Teaching science for understanding : a human constructivist view(pp.145-166). Academic press.
Tsai, P. S., Hwang, G. J., Tsai, C. C., Hung, C. M., & Huang, I. (in press). An electronic library-oriented approach for supporting web-based problem-solving activities. Educational Technology & Society.
UNESCO(1980).Environmental Education in the Light of the Tbilisi Conference. Publiced by Presses Universitaires de France, Vendome
Vogel, B., Spikol, D., Kurti, A, & Milrad, M. (2010). Integrating Mobile, Web and Sensory Technologies to Support Inquiry-Based Science Learning. Proceedings of the 6th IEEE WMUTE International Conference on Wireless, Mobile and Ubiquitous Technologies in EducationWMUTE 2010 held in Kaohsiung, Taiwan, April 12-16th, 2010.
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological process. Cambridge. MA: Harvard University Press.
Watts, M., & Alsop, S. (1995). "Questioning and conceptual understanding: The quality of pupils'' questions in science." School Science Review, 76(277), 91-95.
Watts, M., Gould, G., & Alsop, S. (1997). "Questions of understanding: Categorising
pupils'' questions in science." School Science Review, 79(286), 57-63.
White, R.T., & Gunstone, R.F. (1992). Probing Understanding. London: Falmer Press.
Xie, K., & Bradshaw, A. C. (2008). Using question prompts to support ill-structured problem solving in online peer collaborations. International Journal of Technology in Teaching and Learning, 4(2), 148-165.
Zoller, U. (1987). "The fostering of question-asking capability: A meaningful aspect of problem-solving in chemistry." Journal of Chemical Education, 64, 510-512.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關書籍
 
無相關著作
 
無相關點閱
 
QR Code
QRCODE