:::

詳目顯示

回上一頁
題名:建構新產品開發方案的綜合多準則決策模式:應用在有機發光二級體產業
作者:林炎富
作者(外文):LIN, YEN-FU
校院名稱:中華大學
系所名稱:科技管理博士學位學程
指導教授:陳文欽
戴培豪
學位類別:博士
出版日期:2018
主題關鍵詞:新產品開發有機發光二極體層級分析法模糊分析網路程序法new product development (NPD)OLEDAHPFAHP
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:6
在環保綠能的高度競爭環境下,企業為了維持生存的能力與競爭的優勢,必須不斷尋求對企業有利的投資以保持其競爭地位,如跨國合作、新產品開發、更新生產設備等投資,當中又以新產品開發(New Product Development, NPD)最為困難。因此,如何開發一個更經濟與有效率的新產品開發決策模式,對新產品的開發與創新實已刻不容緩。
本研究著重在建構台灣OLED(有機發光二極體)開發之具體可行之決策評估模式。首先透過相關文獻蒐集,並透過業界專家深入訪談,整理出關鍵影響因素,建構層級分析法(Analytic Hierachy Process, AHP)構面及準則,再透過詮釋結構模式(Interpretive Structural Model, ISM)構面與準則間的相互影響,確立構面與準則間的結構關係後,建立OLED產品開發之決策評估架構。最後應用模糊分析層級法(Fuzzy Analytic Hierarchy Process, FANP)以成對比較與兩兩比較的方式取得各層級權重,依權重值排序找出構面與準則間影響OLED產品開發的重要指標,並執行OLED新產品案例實證研究,將結果提供建議予決策者於新產品開發之參考。
本研究透過FANP /複合式優先向量法針對構面、準則以及三種新產品(方案)挑選做一比較,發現構面部分,FANP法最重要的是O1經營團隊,其次是O3產品與技術;而複合式優先向量法最重要的是O1經營團隊,其次是O2資金財務。其次針對準則方面做比較說明,FANP與複合式優先向量法均認為C7投資報酬率、C21專家研究與產業評估為最重要的前兩名,再者FANP法認為C24低成本與高效率,而複合式優先向量法認為C25環保且節能減碳最不重要。最後就PMOLED新產品(方案)而言,FANP法與複合式優先向量法均選擇A3新產品三為最具競爭力新產品。
In order to survive and sustain competitive advantage in the market, enterprises must continue to seek valuable and advantageous investments, such as international cooperation, new product development and equipment renewal. New Product Development (NPD), among others, is the most difficult one. For that reason, it has become an important task to propose a more economical and more efficient NPD decision-making model, which can develop novel and of creative products in a short period of time for satisfing the customer’s needs, and further enhancing the competitiveness of enterprises in the international market will be an imperative topic.
This study proposed an integrated decision-making evaluation model of new product development (NPD) of OLED products. First of all, through relevant literature review and in-depth interviews with industry experts, the key influencing factors are sorted out to construct the objectives and criteria using analytic hierachy process (AHP), and then the interdependencies between objectives and criteria through the interpretive Structural Model (ISM) for the development of OLED products. Finally, a fuzzy theory is applied to resolve the linguistic hedges, and a fuzzy analytic network process (FANP) is adopted to obtain and rank the weights of all the factors, then the best alternative can be chosen. A complete case study is undertaken in a Taiwanese company that provides professional packing and design for new products of OLED.
In this study, the FANP and composite priority vector (CPV) method are compared with objectives, criteria, and alternatives (three new products). The results found that the most important one using FANP method is the O1 management team, followed by the O3 products and technologies in light of objectives; whereas the most important of the CPV methods is O1 management team, followed by the O2 financial funds. Furthermore, the comparison of the criteria shows that the FANP and CPV method both considers the top two of criteria are C7 return on investment (ROI) and C21 experts’ research and industrial assessment. In addition, the FANP method indicates the C24 to be the least important and CPV method considers C25 to be the least important. Finally, regarding the new PMOLED products (alternatives), both the FANP method and theCPV method are selected the A3 new product as the most competitive new product.
友達光電股份有限公司 (https://auo.com/zh-TW) 蔣工程師技術講解。
王俊凱(2013)。LED、OLED 未來的發展與應用。
平面顯示器年鑑 (2005)。光電科技。24 (78)。
朱俊嘉(2017)。台灣中小尺寸面板未來經營關鍵成功因素之研究。國立中山大學高階經營碩士學程在職專班碩士論文,高雄市。
東元激光科技(http://www.tecogroups.com.tw/)OLED原理及製程。Display Search (http://www.displaysearch.com.tw/)。
洪孟瑛(2010)。結合SWOT與ANP之決策方法應用於台灣碳標籤之推行。臺北科技大學環境工程與管理研究所碩士論文,台北市。
徐村和、林凌仲(2006)。應用模糊分析網絡流程於品牌形象評估。2006台灣商管與資訊研討會論文集,台北大學:台北市。
張惟淳(2009)。OLED產業的式微與再起歷程之研究-複雜理論的觀點。pp.1。 2009/09/11。
悠景科技股份有限公司 (http://www.eechain.com/) OLED原理及製程。
產業經濟與趨勢研究中心(Industrial Economics & Knowledge Center,IEK) 全球OLED市場現況與展望。
陳良吉(2000)。工業材料。
陳金鑫、鄧青雲、石建民(1996)。 化學。
陳虹遐(2004)。應用分析網路程序法於液晶電視之生態效益評估。國立成功大學工業設計研究所碩士論文,未出版,台南市。
陳耀茂(2011)。決策方法與應用。鼎茂圖書出版股份有限公司。
馮正民、邱裕鈞(2004) 。研究分析方法。建都文化事業股份有限公司出版。
黃啟誠(2005) 。科技研發專案的模糊網絡決策分析。中山大學公共事務管理研究所博士論文。
黃雪晴(2000) 。國內資訊電子業聯盟夥伴選擇模式之研究。成功大學工業管理研究所碩士論文。
葉迎森(2013) 。LG彎曲OLED電視上市。pp.1。2013-05-03。
資訊俱樂部Kisplay (2013)。”OLED如何發光?簡單原理你一定要懂!”。pp.1。2013/03/19。
達虹科技股份有限公司(http://www.candotec.com/) 彩色濾光片及觸控面板原理。
趙清煙、張恩崇、白瑞芬、陳秋炳(1999)Maitiv光學工程
鄧振源、曾國雄(1989a)。層級分析法的內涵特性與應用(上)。中國統計學報,第27卷,第6期,第5-22頁。
鄧振源、曾國雄(1989b)。層級分析法的內涵特性與應用(下) 。中國統計學報,第27卷,第7期,第1-15頁。
鄭榮安、陳金鑫(2001)。前瞻性OLED的展望──可撓曲式有機發光二極體之開發現況。電子與材料。11(37)。
韓國LG (2012)。LG於IFA 2012發表完整家庭娛樂產品線 推出全世界最大尺寸、最輕薄的OLED電視,pp.1, 2012/09/04/wiki。“有機發光二極體”。OLED的歷史。
簡金雄、陳金鑫(2001)。二十一世紀的明星產業-有機發光二極體平面顯示器技術。
簡金雄、陳金鑫“ANOIDATECHNOLOGYROADMAP, Organic Light Emitting Diodes OLEDs) for General Illumination Update 2002” 。pp.1。 2005.07.05。

Adamo, J. M. (1980). Fuzzy Decision Tree. Fuzzy Sets and Systems, 4, 207-219.

Alawamleh, M., & Popplewell, K. (2011). Interpretive structural modelling of risk sources in a virtual organisation. International Journal of Production Research, 49(20), 6041-6063.

Attri, R., Grover S., Dev, N., & Kumar, D. (2012). An ISM approach for modeling the enablers in the implementation of total productive maintenance (TPM). International Journal System Assurance Engineering and Management, DOI: 10.1007/s13198-012-0088-7.

Buckley, J. J. (1985). Fuzzy Hierarchical Analysis. Fuzzy Sets and Systems, 17(3), 233-247.

Buyukozkan, G., T. Ertay, C. Kahraman, & Ruan, D. (2004). Determining the importance weights for the design requirements in the house of quality using the fuzzy analytic network approach. International Journal of Intelligent Systems, 19, 443-461.

Campos Ibanez, L. M., & Gonzalez Munoz, A. (1989). A Subjective Approach for Ranking Fuzzy Numbers. Fuzzy Sets and Systems, 29, 145-153.

Carlsson, C., & Fuller, R. (1996). Fuzzy Multiple Criteria Dcision Making: Recent Developments. Fuzzy Sets and System, 78, 139-153.

Chan, F. S. (2003). Interactive selection model for supplier selection process: an analytical hierarchy process approach. International Journal of Production Research, 41(15), 3549-3579.

Chan, F. T., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35(4), 417-431.

Chen, J.-K., & Chen, I-S. (2009). Using a novel conjunctive MCDM approach based on DEMATEL, fuzzy ANP, and TOPSIS as an innovation support system for Taiwanese higher education. Expert Systems with Applications, 37(3), 1981-1990.

Chen, C. T. (2000). Extensions of TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(2000), 1-9.

Chen, W. C., & Chang, H. P. (2012). The application of fuzzy ANP in the development of new product decision-making - a case study of the solar module industry. Advanced Materials Research, 472-475, 1333-1338.

Chen, W. C., Lin, Y. F., Liu, K. P., Chang, H. P., Wang, L. Y., & Tai, P. H. (2018). A Complete MCDM Model for NPD Performance Assessment in an LED-Based Lighting Plant Factory. Mathematical Problems in Engineering, 2018.

Cheng, C. H., & Mon D. L. (1994). Evaluating weapon system by analytical hierarchy process based on fuzzy scales. Fuzzy Sets and Systems, 63, 1-10.

Cheng, C. H. (1996). Evaluating naval tactical missile systems by fuzzy AHP based on the grade value of membership function. European Journal of Operational Research, 96(2), 343-350.

Cheng, C. H. (1998). A New Approach for Ranking Fuzzy Numbers by Distance Method. Fuzzy Sets and Systems, 95, 307-317.

Cheng, C. H. (1999). Evaluating weapon systems using ranking fuzzy numbers. Fuzzy Sets and Systems, 107, 25-35.

Chirra, S., & Kumar, D. (2018). Analysis of SCF under sales promotional schemes: an application of interpretive structural modelling approach. International Journal of Production Research, 1-19.

Choi, T. Y., & Hartley, J. L. (1996). An Exploration of Supplier Selection Practices Across the Supply Chain. Journal of Operations Management, 14, 333-343.

Csutora, R., & Buckley, J. J. (2001). Fuzzy hierarchical analysis: the Lambda-Max method. Fuzzy sets and Systems, 120(2), 181-195.

Huang, J. J., Tzeng, G. H., & Ong, C. S. (2005). Multidimensional Data in Multidimensional Scaling Using the Analytic Network Process. Pattern Recognition Letters, 26, 755-767.

Kim, K., & Park, K. S. (1990). Ranking Fuzzy Numbers with Index of Optimism. Fuzzy Sets and Systems, 35, 143-150.

Klir, G. I., & Yan, B. (1995). Fuzzy sets and fuzzy logic theory and applications. London: Prentice-Hall International.

Korpela, J., Antti, Lehmusvaara, & Nisonen, J. (2007). Warehouse Operator Selection by Combining AHP and DEA methodologies. International Journal of Production Economics, 108, 135-142.

Lee, A. H. I., Kang, H. Y., & Wang, W. P. (2005). Analysis of priority mix planning for semiconductor fabrication under uncertainty. International Journal of Advanced Manufacturing Technology, 28, 351-361.

Lee, A. H. I., Lin, C. Y. (2011). An integrated fuzzy QFD framework for new product development. Flexible Service and Manufacturing Journal, 23, 26-47.

Lee, E. S. & Li, R. J. (1988). Comparison of Fuzzy Numbers Based on the Probability Measure of Fuzzy Events. Computers & Mathematics with Applications, 15(10), 887-896.

Lim, M. K., Tseng, M. L., Tan, K. H., & Bui, T. D. (2017). Knowledge management in sustainable supply chain management: Improving performance through an interpretive structural modelling approach. Journal of cleaner production, 162, 806-816.

Mikhailov, L., & Singh, M.G. (2003). Fuzzy analytic network process and its application to the development of decision support systems. IEEE Transactions on Engineering Management, 33(1), 33-41.

Mohanty, R. P., R. Agarwal, A. K. Choudhury, & Tiwari, M. K. (2005). A fuzzy ANP-based approach to R&D project selection: A case study. International Journal of Production Research, 43(24), 5199-5216.

Murtaza, M. B. (2003). Fuzzy-AHP application to country risk assessment. American Business Review, 21(2), 109-116.

Phillis, Y. A., & Andriantiatsaholiniaina, L. A. (2001). Sustainability: an ill-defined concept and its assessment using fuzzy logic. Ecological economics, 37(3), 435-456.

Promentilla, M. A. B., T. Furuichi, K. Ishii, & Tanikawa, N. (2007). A Fuzzy Analytic Network Process for Multi-Criteria Evaluation of Contaminated Site Remedial Countermeasures. Journal of Environmental Management, 88(3), 479-495.

Raj T.,& Attri R. (2011). Identification and modeling of barriers in the implementation of TQM. International Journal of Productivity and Quality Management, 28(2), 153-179.

Raj T., Attri R., & Jain V. (2012). Modeling the factor affecting flexibility in FMS. International Journal of Industrial and System Engineering, 11(4), 350-374.

Runkler, T. A. (1997). Selection of Appropriate Defuzzification Methods Using Application Specific Properties. IEEE Transactions of Fuzzy Systems, 5(1), 72-79.

Saaty, R. W. (2003). Decision Making In Complex Environments: A Tutorial for the SuperDecisions Software. Creative Decisions Foundation.

Saaty, T. L., & Takizawa, M. (1986). Dependence and Independence: From Linear Hierarchies to Nonlinear Networks. European Journal of Operational Research, 26, 229-237.

Saaty, T. L. (1971). On polynomials and crossing numbers of complete graphs. Journal of Combinatorial Theory, Series A, 10(2), 183-184.

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical Psychology, 15, 234-281.

Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw-Hill.

Saaty, T. L. (1982). The relationship between the AHP and the additive value function. Decision Sciences, 13, 702-713.

Saaty, T. L. (1996). Decision Making With Dependence And Feedback-The Analytic Network Process. RWS Publication.

Saaty, T. L. (1999). Fundamentals of the analytic network process. ISAHP, Kobe, Japan, August 12-14.

Saaty, T. L. (2003). Decision making in complex environments, Super Decisions.-The Analytic Network Process. RWS Publications.

Saaty, T. L. (2004). Fundamentals of the analytic network process- Dependence and feedback in decision-making with a single network. Journal of Systems Science and Systems Engineering, 13(2), 129-157.

Saaty, T. L. (2005). Theory and Applications of the Analytc Network Process: Decisions Making with Benefits, Opportunities. Costs, and Risks, RWS Publications.

Sage, A. P. (1977). Interpretive structural modeling: Methodology for large-scale system. New York, NY: McGraw-Hill.

Sinrat, S. & Atthirawong, W. (2015). Integrated factor analysis and fuzzy analytic network process (FANP) model for supplier selection based on supply chain risk factors. Research Journal of Business Management, 9(1), 106-123.

Tatsuoka, K. K. (1995). Architecture of Knowledge Structures and Cognitive Diagnosis: A statistical Pattern Recognition and Classification Approach. In P. D. Nichols, S. F. Chipman, & R. L. Brennan (Eds.), Cognitively Diagnostics Assessment, Hillsdale, NJ: Lawrence Erlbaum Associates, 327-359.

Teng, J. Y. and Tezng, G. H. (1993). Transportation Investment Project Selection with Fuzzy Multi-objectives. Transportation Planning and Technology, 17(2), 91-112.

Thirupathi, R. M., & Vinodh, S. (2016). Application of interpretive structural modelling and structural equation modelling for analysis of sustainable manufacturing factors in Indian automotive component sector. International Journal of Production Research, 54(22), 6661-6682.

Tolga, G. E. N. Ç., KABAK, M., ÖZCEYLAN, E., & ÇETINKAYA, C. (2018). Evaluation of natural gas strategies of Turkey in East Mediterranean region: a strengths-weaknesses-opportunities-threats and analytic network process approach. Technological and Economic Development of Economy, 24(3), 1041-1062.

Valmohammadi, C. & Dashti, S. (2016). Using interpretive structural modeling and fuzzy analytical process to identify and prioritize the interactive barriers of e-commerce implementation. Information & Management, 53, 157-168.

Vittal, A., & Shivraj, K. (2008). Role of Information Technology and Knowledge Management in improving project management. VINE, 38(3), 357-369

Wang, H. F. (2004). Multicriteria Decision Analysis-From Certainty to Uncertainty. Tsang Hai Book.

Wang, W. C., Wang, H. H., Lai, Y. T., & Li, C. C. (2006). Unit-price-based model for evaluating competitive bids. International Journal of Project Management, 24(2), 156-166.
Wang, W. M., Lee, H.I., Peng, L.P., Wu,Z.L. (2012). An integrated decision making model for district revitalization and regeneration project selection. Decision Support Systems, doi: 10.1016/j.dss.2012.10.035.

Warfield, J. N. (1974a). Toward Interpretation of Complex Structural Modeling. IEEE Transportation Systems Man Cybernet. 4(5), 405-417.

Warfield, J. N. (1974b). Developing Interconnection Matrices in Structural Modeling. IEEE Transportation Systems Man Cybernet, 4(1), 81-87.

Warfield, J. N. (1976). Societal Systems Planning, Policy and Complexity. New York: Wiley.

Wind, Y., & Saaty, T. L. (1980). Marketing Applications of The Analytic Hierarchy Process. Management Science. 26 (7), 641-657.

Yeh, C. H. & Deng, H. (2004). A Practical Approach to Fuzzy Utilities Comparison in Fuzzy Multicriteria Analysis. International Journal of Approximate Reasoning, 35, 179-194.


Yu, J. R., & Cheng, S. J. (2007). An Integrated Approach for Deriving Priorities in Analytic Network Process. European Journal of Operational Research, 180, 1427-1432.

Yuksel, I., & Dagdeviren, M. (2007). Using the Analytic Network Process (ANP) in a SWOT Analysis-A Case Study for a Textile Firm. Information Sciences,177, 3364-3382.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Zadeh, L. A. (1973). The Concept of a Linguistic Variable and Its Application to Approximate Reasoning. New York: Elsevier North-Holland.

Zheng, L., & Liu, H. (2013). Evaluating multifunctional agriculture in Dalishu, China: A combined application of SWOT analysis and the analytic network process method. Outlook on AGRICULTURE, 42(2), 103-108.

Zhou, L., & Chen, Y. (2014). Exploring the potential of community-based grassland management in Yanchi County of Ningxia Hui Autonomous Region, China: an application of the SWOT-AHP method. Environmental earth sciences, 72(6), 1811-1820.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE