:::

詳目顯示

回上一頁
題名:探究活動開放程度分類表的發展與不同開放程度探究教學活動之成效比較研究
作者:顧炳宏
作者(外文):Bing-Hong Ku
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:溫媺純
學位類別:博士
出版日期:2013
主題關鍵詞:大器壓力概念引導發現式教學食譜式實驗探究教學密度概念guided discovery teachinginquiry teachingrecipe style experimentdensity conceptair pressure concept
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:24
本研究旨在發展一較為適切的「探究活動開放程度分類表」(the Scale of Openness For Inquiry Activities, 簡稱SOFIA),並探討依據此分類表所設計之不同開放程度探究教學活動之成效。
研究者首先透過文獻探討與文獻分析,檢視傳統探究活動開放程度的分類方式可能產生的問題,提出新的分類觀點與分類方式,並據以發展出SOFIA。接著,研究者結合了兩個不同的研究,用以探討新式探究活動開放程度分類表SOFIA的合理性,以及SOFIA中不同開放程度探究教學活動之成效。研究一主要採個案研究法,以大氣壓力概念為主題,以教師施行不同探究教學的經驗為基礎,藉由三位個案教師對於不同教學的看法以及探究教學的觀點,探討SOFIA的合理性以及不同開放程度探究教學活動之成效。研究二則是採準實驗研究法,以密度概念為主題,根據SOFIA設計不同開放程度的探究教學活動,探討不同開放程度探究教學對學生學習成效上的影響和差異、學生對於不同開放程度探究教學活動的感受、以及教師對於不同開放程度探究教學活動的觀點與評價。
研究結果顯示,1.各類探究教學活動在許多向度上的內容型態會有眾多差異性,而這種差異性可以藉由SOFIA的分類獲得更清晰的圖像,並且可有效的對不同開放程度的探究教學做出區分,對傳統分類方式做出修正;2.針對實驗導向式教學、引導發現式教學、驗證導向式教學以及傳統講述式教學等四種不同教學方式成效之探查,以所耗費之時間和達成之成效看來,引導發現式教學在效益和效率上之成效為四種教學中最為優異;3. 從學生對於不同開放程度探究教學活動的感受看來,實驗導向教學組的學生雖然經歷了較為完整探究的過程,但容易遭遇認知負荷過載的問題,因此常顯的迷惘與不知所措。引導發現式教學雖然不強調讓學生進行大幅度的探究活動如形成假設、驗證假設等,但是卻相當重視讓學生在得到充分資訊的基礎下,透過討論、解釋資料和意見交流等方式逐步形成科學知識,並藉以培養學生對於探究的理解、批判思考、分析解釋等能力,因而相較於更為開放的實驗導向式教學,引導發現式教學仍然能提供同等的成效;4.由教師對於不同開放程度探究教學活動的觀點與評價看來,引導發現式教學在時間的耗費上仍屬於教師可接受之範圍,介於科學探究式和食譜式實驗之間,但成效卻遠大於食譜式實驗;在付出與獲得,亦即效益與效率方面,對教師進行教學改變而言屬於一種較為折衷而可行的方式。
This study aimed to develop a new scale of openness for inquiry activities (SOFIA), and to explore the effects of different teaching styles in different levels of the SOFIA.
Through literature review, the researcher had analyzed different viewpoints toward inquiry and explained the problems raised from current existing taxonomies of levels of inquiry openness. Based on a systematic synthesis, the researcher had proposed a new and more appropriate scale, that is, the SOFIA.
Two studies were combined to complete this research. In the first study, the purposes intended to check the reasonableness of the SOFIA and to explore the effects of different teaching styles in different levels of the SOFIA. Case study method was employed and three junior high school science teachers volunteered to participate in this study. Based on the experiences of implementing different inquiry teaching methods to teach the air pressure concept, qualitative data of the teachers’ perspectives on different teaching methods and their opinions about inquiry teaching were collected and analyzed.
The objectives of the second study included to explore: 1. the effects of different teaching styles in different levels of the SOFIA, 2. the students’ perceptions and opinions of the different teaching methods, and 3. the teacher’s perspectives and evaluations of the different teaching methods. A quasi-experimental method was employed. Three different levels of inquiry activities were designed in accordance with the SOFIA for teaching the density concept. A junior high school science teacher volunteered to participate in this study, and the four classes taught by him were randomly assigned to three experimental groups and one control group. Both quantitative and qualitative data were collected and analyzed.
The researcher first found that the SOFIA used several components to successfully distinguish different levels of openness of inquiry activities and to fix the problem raised by the traditional scales. Secondly, the guided discovery teaching provided significantly better effects than other inquiry teaching methods. Thirdly, compared with more open-ended inquiry teaching method, the guided discovery teaching produced equivalent results in developing students’ inquiry skills. Finally, the guided discovery teaching method satisfied the inquiry-oriented teaching requirement, concept-oriented teaching requirement, and classroom-setting requirement. Hence, the guided discovery teaching method may serve as a stepping stone for those teachers who intend to advance inquiry teaching method.
中文部分
李昌汶(民85)。國中學生密度概念的診斷與探討(未出版之碩士論文)。國立臺灣師範大學,台北市。
林英智(主編)(民98)。國民中學自然與生活科技(第三冊)。台北縣:康軒文教。
洪振方(民92)。探究式教學的歷史回顧與創造性探究模式的探討。高雄師大學報,15,641-662。new window
姜志忠、張惠博、林淑梤、鄭一亭(民92)。 物理史融入教學對提升學生科學認識論瞭解及其學習成效之研究。科學教育學刊,14,637-661。new window
教育部(民92)。國民中小學九年一貫課程綱要。台北市:作者。new window
郭重吉(主編)(民98)。國民中學自然與生活科技(第三冊)。台南:南一書局。
陳世煌、方崇雄、姚珩(主編)(民98)。國民中學自然與生活科技(第三冊)。台南:翰林出版社。
黃台珠、Aldridge, J. M.與Fraser, B. (民87)。台灣和西澳科學教室環境的跨國研究:結合質性與量的研究方法。科學教育學刊,6,343-362。new window
劉湘瑤、李麗菁、蔡今中(民96)。科學認識觀與社會性科學議題抉擇判斷之相關性探討。科學教育學刊,15,335-356。new window
顧炳宏(民96)。吸飲現象—概念改變探究活動示例。物理教育學刊,8,100-104。
顧炳宏(民97)。大氣壓力之引導探究式教學活動設計。物理教育學刊,9, 123-136。
顧炳宏、楊孟欣、陳瓊森(民98)。多變的聲音—國中八年級聲波概念之教學活動設計。科學教育月刊,322,20-32。
顧炳宏、林建隆、溫媺純(民98)。新式科學探究活動開放程度分類表的研究與建構。「2009中華民國物理學會年會研討會」發表之論文,國立彰化師範大學。
顧炳宏、陳瓊森、溫媺純(民100)。 從學生的表現與觀點探討引導發現式教學作為發展探究教學之折衷方案角色的成效—以密度概念為例。科學教育學刊,19,257-282。new window
顧炳宏、楊和學、陳瓊森(民101)。結合學習環教學模式的密度概念探究教學活動設計。科學教育月刊,346,34-54。
顧炳宏、陳瓊森、溫媺純(印製中)。 以實作評量方式探討引導發現式教學模式之學習成效—以「聲音」概念為例。科學教育學刊。new window

英文部分
Abd-El-Khalick, F., BouJaoude, S., Duschl, R., Lederman, N., Mamlok-Naaman, R., Hofstein, A., Niaz, M., Treagust, D., &; Tuan, H. (2004). Inquiry in science education: International perspective. Science Education, 88, 397-419.
American Association for the Advancement of Science. (1990). Science for all americans. New York, NY: Oxford University Press.
American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York, NY: Oxford University Press.
Anderson, R. D., &; Helms, J. V. (2001). The ideal of standards and the reality of schools: Needed research. Journal of Research in Science Teaching, 38, 3-16.
Anderson, R. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13, 1-12.
Atkinson, R., &; Shiffrin, R. (1968). Human memory: A proposed system and its control processes. In K. Spence &; J. Spence (Eds.), The psychology of learning and motivation (Vol. 2, pp. 89-195). New York, NY: Academic.
Barman, C. (2002). Guest editorial: How do you define inquiry? Science &; Children, 40, 8-9.
Barrow, L. H. (2006). A brief history of inquiry: From Deway to Standards. Journal of Science Teacher Education, 17, 265-278.
Berg, C. A. R., Bergendahl, V. C. B., Lundberg, B. K. S., &; Tibell, L. (2003). Benefiting from an open-ended experiment? A comparison of attitudes to, and outcomes of, an expository versus an open-inquiry version of the same experiment. International Journal of Science Education, 25, 351-372.
Brandwein, P. F. (1962). Elements in a strategy for teaching science in the elementary school, in the burton lectures. New York, NY: Harcourt, Brace, &; World.
Bredderman, T. (1983). Effects of activity-based elementary science on student outcomes: A quantitative synthesis. Review of Educational Research, 53, 499-518.
Bruner, J. (1960). The process of education. Cambridge, MA: Harvard University Press.
Bruner, J. (1961). The art of discovery. Harvard Educational Review, 31, 21-32.
Bybee, R. W., &; DeBoer, G. (1993). Goals for the science curriculum. In Handbook of Research on Science Teaching and Learning. Washington, DC: National Science Teachers Association.
Champagne, A., &; Klopfer, L. (1977). A sixty-year perspective on three issues in science education: Ⅰ.Whose ideas are dominant? Ⅱ. Representation of women. Ⅲ. Reflective thinking and problem solving. Science Education, 61, 431-452.
Chief, A. (1993). Relevant inquiry: Six questions to guide your students. The Science Teacher, 60, 26-27.
Colburn, A. (2004). Inquiring scientists want to know. Educational Leadership, 62, 63-66.
Costenson, K., &; Lawson, A. E. (1986). Why isn’t inquiry used in more classroom? American Biology Teacher, 48, 150-158.
Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-114.
Craig, R. (1956). Directed versus independent discovery of established relations. Journal of Educational Psychology, 47, 223-235.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles of science teacher. Journal of Research in Science Teaching, 37, 916-937.
Deboer, G. E. (1991). A history of ideas in science education: Implications for practice. New York, NY: Teacher College Press.
De Jong, O., &; Taber, K. S. (2007). Teaching and learning the many faces of chemistry. In S. K. Abell &; N. G. Lederman (Eds.), Handbook of research on science education (pp. 631-652). New Jersey, NJ: Lawrence Erlbaum Associates.
DeMeo, S. (2001). Beyond density: An inquiry-based activity involving students searching for relationships. Journal of Chemical Education, 78, 201-203.
Dewey, J. (1933). How we think: A restatement of the relation of reflective thinking to the educative process. Lexington, MA: D.C. Heath.
Domin, D. S. (1999). A review of laboratory instruction styles. Journal of Chemical Education, 76, 543-547.
Driver, R. (1983). The pupil as scientist? Milton Keynes, England: Open University Press.
Duit, R., Niedderer, H., &; Schecker, H. (2007). Teaching physics. In S. K. Abell &; N. G. Lederman (Eds.), Handbook of research on science education (pp. 599-629). New Jersey, NJ: Lawrence Erlbaum Associates.
Edwards, D., &; Mercer, N. (1987). Common knowledge: The development of understanding in the classroom. London, England: Routledge.
Fitzgerald, M. A., &; Byers, A. (2002). A rubric for selecting inquiry-based activities. Science Scope, 26, 22-25.
Fraser, B. J. (1998). Science learning environments: Assessment, effects, and determinants. In B. J. Fraser &; K. G. Tobin (Eds.), The international handbook of science education (pp. 527-564). Dordrecht, Netherlands: Kluwer Academic Publishers.
Furtak, E. M. (2006). The problem with answers: An exploration of guided scientific inquiry teaching. Science Education, 90, 453-467.
Gabel, D. (1999). Improving teaching and learning through chemical education research: A look to the future. Journal of Chemical Education, 76, 548-554.
Gagné, R. M. (1985). The conditions of learning. (4th ed.). New York, NY: Holt, Rinehart and Winston.
Gagné, R. M. (1988). Essentials of learning for instruction (2nd ed.). New Jersey, NJ: Prentice-Hall, Inc.
Gagné, R. M., Wager, W. W., Keller, J. M., &; Golas, K. C. (2005). Principles of instructional design (5th ed.). Canada, CA: Wadsworth.
Gerjets, P., Scheiter, K., &; Catrambone, R, (2004). Designing instructional examples to reduce intrinsic cognitive load: Molar versus modular presentation of solution procedures. Instructional Science, 32, 33-58.
Gauld, C. (1982). The scientific attitude and science education: A critical reappraisal. Science Education, 66, 109-121.
Hancock, C., Kaput, J. J., &; Goldsmith, L. T. (1992). Authentic inquiry with data: Critical barriers to classroom implementation. Educational Psychologist, 27, 337-364.
Hawkes, S. J. (2004). The concept of density. Journal of Chemical Education, 81, 14-15.
Hegarty-Hazel, E. (1986). Lab work. SET: Research information for teachers (Vol.1). Canberra, Australia: Australian Council for Education Research.
Hering, W. M. (1979). Social studies education: The inquiry method. In The Encyclopedia of Education, (Vol.8). Croboll-Collier.
Herron, D. (1971). The nature of science inquiry. School Review, 79, 171-212.
Hinrichsen, J., &; Jarrett, D. (1999). Science inquiry for the classroom: A literature review. Portland, OR: Northwest Regional Educational Laboratory.
Hitt, A. M. (2005). Attacking a dense problem: A learner-centered approach to teaching density. Science Activities: Classroom Projects and Curriculum Ideas, 42, 25-29.
Hmelo-silver, C. E., Duncan, R. G., &; Chinn, C. A. (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark (2006). Educational Psychologist, 42, 99-107.
Hodson, D. (1996). Laboratory work as scientific method: Three decades of confusion and distortion. Journal of Curriculum Studies, 28, 115-135.
Jeanpierre, B., Oberhauser, K., &; Freeman, C. (2005). Characteristics of professional development that effect change in secondary science teachers’ classroom practices. Journal of Research in Science Teaching, 42, 668-690.
Kalyuga, S., Chandler, P., Tuovinen, J., &; Sweller, J. (2001).When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579-588.
Khishfe, R., &; Abd-Al-Khalick, F. (2002). Influence of explicit and reflective versus inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Science Teaching, 39, 551-578.
Klahr, D., &; Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15, 661-667.
Kirschner, P. A., Sweller, J., &; Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41, 75-86.
Ku, B. H., Wen, L. M., &; Chen, C. S. (2009). The development of a more comprehensive scale of levels of openness for inquiry activities and its application on teaching practices. In C. F. Tsaur (Chair), Teaching and learning. Symposium conducted at the meeting of the Australasian Science Education Research Association (ASERA), Geelong, Victoria, Australia.
Ku, B. H. &; Chen, C. S. ( in press ). The jar magic - Instructional activities for teaching air pressure. The physics teacher.
Kyle, W. C. (1980). The distinction between inquiry and scientific inquiry and why high school science should be cognizant of the distinction. Journal of Research in Science Teaching, 17, 123-130.
Lawson, A. E. (2002). Science teaching and development of thinking. Wadsworth, England: Thomson Learning.
Lederman, N. (2003). Letters: Learning about inquiry. Science &; Children, 40, 9.
Lott, G. W. (1983). The effect of inquiry teaching and advance organizers upon student outcomes in science education. Journal of Research in Science Teaching, 20, 437-451.
Lunetta, V. N. (1998). The school science laboratory: Historical perspective and context for contemporary teaching. In K. Tobin &; B. Fraser (Eds.), International handbook of science education (pp. 249-262). The Netherlands: Kluwer Press.
Loveless, T. (1998). The use and misuse of research in educational reform. In D. Ravitch (Ed.), Education policy (pp. 285-286). Washington, DC: Brookings Institution Press.
Mamlok, R., &; Hofstein, A. (2001). Inquiry-type laboratories in high school chemistry in Israel. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, St. Louis, MO.
Martin-Hansen, L. (2002). Defining inquiry. The Science Teacher, 69, 34-37.
Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 41, 75-86.
McComas, W. F. (Ed.) (1998). The nature of science in science education: Rationales and strategies. The Netherlands: Kluwer Academic Publisher.
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.
Minstrell, J., &; van Zee, E. (Eds.). (2000). Inquiring into inquiry learning and teaching in science. Washington, DC: American Association for the Advancement of Science.
Mintzes, J. J., Wandersee, J. H., &; Novak, J. D. (Eds.). (1999). Assessing science understanding. Canada, CA: Academic Press.
Moreno, R. (2004). Decreasing cognitive load in novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99-113.
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council. (2001). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books.
Pataray-Ching, J., &; Roberson, M. (2002). Misconceptions about a curriculum-as-inquiry framework. Language Arts, 79, 498-505.
Renkl, A., &; Atkinson, R. K. (2003) Structuring the transition from example study to problem solving in cognitive skill acquisition: A cognitive load perspective. Educational Psychologist, 38, 15-22.
Roehrig, G. H. (2004). Constraints experienced by beginning secondary science teachers in implementing scientific inquiry lessons. International Journal of Science Education, 26, 3-24.
Roth, W. M. (1995). Authentic school science: Knowing and learning in open-inquiry science laboratories. Dordrecht, The Netherland: Kluwer Academic Publishing.
Roth, W. M. (2006). Learning science: A singular plural perspective. Rotterdam, Netherlands: Sense.
Rutherford, F. J. (1964). The role of inquiry in science teaching. Journal of Research in Science Teaching, 2, 80-84.
Schneider, R. M., Krajcik, J., Marx, R. W., &; Soloway, E. (2002). Performance of students in project-based science classrooms on a national measure of science achievement. Journal of Research in Science Teaching, 39, 410-422.
Schwab, J. (1960). Enquiry, the science teacher, and the educator. The Science Teacher, 27, 6-11.
Schwab, J. (1962). The teaching of science. Cambridge, MA: Harvard University Press.
Steffe, L., &; Gale, J. (Eds.). (1995). Constructivism in education. Hillsdale, NJ: Lawrence Erlbaum Associate, Inc.
Shymansky, J. A., Hedges, L. V., &; Woodworth, G. (1990). A reassessment of the effects of inquiry-based science curricula of the 60’s on student performance. Journal of Research in Science Teaching, 27, 127-144.
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitivel Science, 12, 257-285.
Sweller, J., van Merriënboer, J. J. G., &; Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251-296.
Sweller, J. (1999). Instructional design in technical areas. Camberwell, Australia: ACER Press.
Sweller, J. (2003). Evolution of human cognitive architecture. In B. Ross (Ed.), The psychology of learning and motivation (Vol. 43, pp. 215-266). San Diego, CA: Academic.
Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, 9-31.
Trautmann, N., Makinster, J., &; Avery, L. (2004). What makes inquiry so hard? (And why is it worth it?). Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Vancouver, BC.
Trowbridge. L. W., &; Bybee, R. W. (1986). Becoming a secondary school science teacher. New York, NY: Merrill Press.
Tuovinen, J. E., &; Sweller, J. (1999). A comparison of cognitive load associated with discovery learning and worked examples. Journal of educational psychology, 91, 334-341.
Vanfossen, P. J., &; Shiveley, J. M. (1997). Things that make you “Hmmm…”: Creating inquiry “problems” in the elementary social studies classroom. Social Studies, 88, 71-77.
Van Merriënboer, J., Kirschner, P., &; Kester, L. (2003). Taking the load off a learner’s mind: Instructional design for complex learning. Educational Psychologist, 38, 5-13.
VonSecker, C. E., &; Lissitz, R.W. (1999). Estimating the impact of instructional practices on student achievement in science. Journal of Research in Science Teaching, 36, 1110-1126.
Wallace, C. S., &; Kang, N. (2004). An investigation of experienced secondary science teachers’ beliefs about inquiry: An examination of competing belief sets. Journal of Research in Science Teaching, 41, 936-960.
Weinstein, T., Boulanger, F. D., &; Walberg, H. J. (1982). Science curriculum effects in high school: A quantitative synthesis. Journal of Research in Science Teaching, 19, 511-522.
Welch, W., Klopfer, L., Aikenhead, G., &; Robinson, J. (1981). The role of inquiry in science education: Analysis and recommendations. Science Education, 65, 33-50.
Wise, K. C., &; Okey, J. R. (1983). A meta-analysis of the effects of various science teaching strategies on achievement. Journal of Research in Science Teaching, 20, 419-435.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE