:::

詳目顯示

回上一頁
題名:創造性探究教學模組對高中社團學生科學探究能力、科學創造力與科學學習動機之影響
作者:林芬如
作者(外文):Lin, Fen-Ju
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:段曉林
秦爾聰
學位類別:博士
出版日期:2019
主題關鍵詞:CIM活動科學探究能力科學創造力科學學習動機高中生CIM ActivitiesScientific Inquiry AbilityScientific CreativityScience Learning MotivationSenior High School Students
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:11
本研究目的旨在探討台灣某中部高中參加「科學與藝術」社團實驗組學生(26人),經過一學年的創造性探究教學模組(Creative Inquiry Model, CIM )介入後,對其科學探究能力與參與度的變化、科學創造力的變化與影響因素,再對照未參與該社團學生比較兩群學生的科學學習動機差異與學習方式的變化。本研究以低科學學習動機的社會組、自然組、體育班與英語班學生共53人為研究對象,對照組27人只接受原本的傳統教學,實驗組26人除了原本傳統教學之外,同時參加一學年CIM活動。本研究採質量合併之研究。量化資料包括(1)探究能力檢核:依據美國奧勒岡教育部(Oregon Department of Education, ODE, 2011)的科學標準對實驗組學生學習單計分。(2)科學創造力評量:根據Lin與Chin (2018)及Lin、Tuan與 Chin(2017) 修訂的「科學創造力產品評量標準」,以實驗組學生CIM活動前/後之創造力產品計分。(3)科學學習動機問卷:以Wu、Tuan、Hsieh與Chin (2013)「科學學習動機問卷」對實驗組與對照組施測。質性資料包括:實驗組個別晤談與小組晤談、課室錄影、學生工作單與學習單、教師手札、學生學習心得;對照組個別晤談、原班任課教師訪談。經過分類、編碼與詮釋提出研究結果與發現。
研究結果顯示:CIM活動對低科學學習動機的實驗組學生的學習有顯著提升效果。(一)科學探究能力與參與度的變化:實驗組中不同類組的學生有不同層次的探究能力進步,參與度越高,探究能力越進步。(二)科學創造力的變化與影響因素探討:量性資料顯示,科學創造力的進步,主要決定於「問題解決」面向完成。質性資料顯示,任務動機越強越有利於科學創造力,探究能力越高越有利於創造力,活動開放程度越大越有利於學門間的跨越與整合,有利於創意思考。(三)科學學習動機差異與學習方式的變化:實驗組科學學習動機比對照組顯著提升,因為學生經驗到科學是人人可以學習、知識是可以自行建構的,有創造力的訓練、在CIM活動中獲得成功、顯著降低學習焦慮、體會科學知識是可以應用的,得到新的學習策略。反之,大多數對照組學生仍以傳統學習方式,以精熟學習為主,學習焦慮沒有降低。
關鍵字:CIM活動、科學探究能力、科學創造力、科學學習動機、高中生
The purpose of this study was to explore the changes of the experimental group students’ learning outcome after participated in the senior high school “Science and Art” club after one-year intervention of creative inquiry model (CIM) in the middle of Taiwan. Students’ learning outcome included examining experimental group students’ scientific inquiry ability and engagement, scientific creativity and influenced factors, and comparing the motivation in science learning and the learning patterns in the experimental group as well as control group 53 students with low motivation in science learning that were selected purposely from different academic areas, sociology group class, science group class, physical education class and English class. The control group, 27 students with similar learning performance as control group, received only traditional teaching. 26 students in the experimental group participated in traditional teaching as well as CIM for one year. The combination of qualitative and quantitative research designs were used in the study. Quantitative data includes (1)Assessment in Scientific Inquiry Ability, the scores of experimental group students’ study reports were based on the scientific standards of the Oregon Department of Education (ODE, 2011), (2)Assessment in Scientific Creativity, the scores of scientific creative’s in the experimental group students’ before and after CIM activities were based on the “Scientific Creativity Product Criteria” that revised by Lin and Chin (2018), and Lin, Tuan and Chin (2017), (3) Science Learning Motivation: The experimental group and the control group students answered the “Scientific Learning Motivation Questionnaire”, that was based on Wu, Tuan, Hsieh and Chin (2013). Qualitative data included individual interviews and group interviews with the experimental and control group students and teachers. In addition, for the experimental group data collection included classroom videos, students’ worksheets, study sheets and their reflective notes, and teachers’ journals. The results and findings of the research were presented through classification, coding and interpretation.
Findings showed that CIM significantly improved senior high school students with low science learning motivation in the science learning in the following dimensions: (1) Changes in scientific inquiry ability and engagements: Students in different groups in the experimental group had different levels of inquiry ability improvement, and the higher the engagements, the more advanced the inquiry ability. (2) Changes on scientific creativity and researches on influenced factors: Quantitative data showed that the progress of scientific creativity is mainly determined by the
iii
completion of "problem solving". The qualitative data shows that the stronger the task motivation on the activity, the more conducive to scientific creativity; the higher inquiry ability is benefit to produce more conducive to scientific creativity. The greater openness on the activity enhance more favorable for students to cross and integrate between the difference subjects, and is conducive to creative thinking. (3) Differences in science learning motivation and changes in learning patterns: The experimental group's motivation of science learning was significantly higher than the control groups, because students experienced creative training made experimental group students’ success on CIM activities and significantly reduced learning anxiety. On the contrary, most of the control group students still used the traditional learning strategies, which was mainly based on mastery learning, and the learning anxiety is not reduced.
Keywords: CIM Activities, Scientific Inquiry Ability, Scientific Creativity, Science Learning Motivation, Senior High School Students
參考文獻
中文部分
王翠妃、余忠潔、段曉林(2013)。探究教學對國中資優學生科學推理類型轉變之影響。特殊教育研究學刊,38(1),79-106。
王麗雲(2014)。基本能力的雙峰現象及因應建議。教育人力與專業發展,31(1),1-4。
甘漢銧、熊召弟、鍾聖校(1996)。小學自然科教學研究。臺北市:師大書苑。
李乙明(2006)。陶倫斯創造思考測驗圖形版(TTCT)(Torrance Tests of Creative Thinking)。臺北市:心理出版社。
李玉芳、郝瑞峰(2011)。日本中小學科學教育的特色及啟示。現代教育論壇,8,33-46。
李明昆、洪振方(2004年10月)。開發符合科學探究教學策略之研究。論文發表於數理教師專業發展學術研討會。彰化縣:彰化師範大學科學教育研究所。
李明昆、洪振方(2011)。九年級學生探究性科學問題提問與問題發展型態之個案研究。科學教育研究與發展季刊,61,51-80。
李明昆、洪振方(2012)。提升科學創造力的探究教學策略之實驗研究。科學教育研究與發展季刊,65,49-74。
李賢哲、李彥斌(2002)。以科學過程技能融入動手做工藝教材培養國小學童科學創造力。科學教育學刊,10(4),341-372。
沈翠蓮(2015)。創意原理與設計。臺北市:五南圖書出版股份有限公司。
余民寧、翁雅芸、張靜軒(2018)。數理科學的學習動機有性別差異嗎? 一個來自後設分析的證據。當代教育期刊,23(1),45-75。
邱皓政(2005)。創造力的測量與共識衡鑑。教育集刊 ,30,50-73。
吳婷婷、吳偉(2017)。ARCS動機模型視角下的“廚房熱力學”案例解析及啟示。物理通報,2,80-82。
吳俊憲、吳錦惠(2015)。翻轉教室-啟動教室裡寧靜的革命。臺灣教育評論月刊,4(6),174-178。
林日宗、許淑婷、洪振方(2014)。不同科學學習動機,創造傾向,師生互動對國一學生在科學創造力表現之分析。教育科學期刊,13(2),1-33。
林幸台、王木榮(1994)。威廉斯創造力測驗指導手冊。臺北市:心理出版社。
林建妤、洪素蘋、劉怡秀、林珊如(2003)。在網路環境中以專家共識評量法評定科技創造力。載於行政院研究考核委員會(主編),TANET2003臺灣網際網路研討會論文集(47-72頁)。臺北市:行政院。
林偉文(2006)。學校創意守門人對創意教學及創造力培育態度與教師創意教學之關係。教育學刊,27,69-92。
林偉文(2006)。樂在其中的創意教師:國民中小學教師教學福樂經驗與創意教學之關係。國立臺北教育大學學報,19(2),111-128。
林碧芳、邱皓政(2008)。創意教學自我效能感量表之編製與相關研究。教育研究與發展期刊,4(1),141-170。
洪文東(2001) 。從問題解決能力培養學生的科學創造力--化學學習活動模組與教學活動設計。行政院國家科學委員會專題研究成果報告(編號:NSC89-2519-S-153-006),未出版。
洪文東(2002a)。 創造型兒童之思考特性與科學創造力的關聯性。屏東師院學報,16,355-394。
洪文東(2002b)。國民中小學九年一貫課程「自然與生活科技」領域教學與學習材料之研究與發展:提昇中小學生思考智能的能力。行政院國家科學委員會專題研究計劃成果報告(編號:NSC 90-2511-S-153-011-X3),未出版。
洪文東(2005) 。九年一貫課程「自然與生活科技」學習領域科學探究能力之培養研究—以探究式教學活動設計提升學生科學研究能力(Ⅰ)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC 93-2511-S-153),未出版。
洪文東(2007)。探究式化學單元教學活動設計與評估:以「水溶液的性質」為例。美和技術學院學報,26 (1),15-42。
洪振方(2003)。探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學報,15,641-662。
徐澄清(1998)。社會化過程的重要機轉--同儕互動。健康世界,145, 10-14。
孫春在、林珊如(2007)。網路合作學習。臺北市:心理出版社。
張世慧(2011)。創造力教學、學習與評量之研究。教育資料與研究雙月刊,100,1-22。
張基成、林冠佑(2016)。從傳統數位學習到遊戲式數位學習-學習成效心流體驗與認知負荷。科學教育學刊,24(3),221-248。
張芳全、陳俐君(2018)。國中生家庭社經地位、文化資本、自然科學習興趣對自然科學習動機影響之縱貫性研究。臺中教育大學學報,32(2),1-33。
張英琦、林建隆、鄭孟斐、張誌原(2017)。多面向概念改變架構融入 5E 探究式教學策略對概念改變成效的探討- 以轉動與力矩單元為例。師資培育與教師專業發展期刊,10(3),87-117。
張春興(2004)。心理學概要。臺北市:東華書局。
張基成、林冠佑(2016)。從傳統數位學習到遊戲式數位學習-學習成效心流體驗與認知負荷。科學教育學刊,24(3),221-248。
郭生玉(2007)。教育心理與測量。臺北市:東華書局。
郭俊呈、侯雅雯(2017)。翻轉教室觀點融入偏鄉教育之省思。師資培育與教師專業發展期刊,10(1),33-47。
彭台光、林鉦棽(2008)。組織現象和層次議題:非獨立性資料的概念和實徵。組織與管理,1(1),95-121。
黃明輝(2009a)。普通物理實驗的教育目標與評量。2009中華民國物理教育年會發表之論文,國立臺灣師範大學。
黃明輝(2009b)。自動化的普通物理實驗教學課程。2009兩岸大專院校基礎物理課程教學研討會發表之論文,國立臺灣大學。
黃明輝(2015)。融入21世紀就業技能的通識教育-以科學素養為例。輔仁大學全人教育學報,13,35-56。
黃明輝(2016)。以探究式實驗統整普通物理實驗教學。物理教育學刊,17(2),33-46。
黃明輝(2017)。單極馬達的原理與教學應用。物理教育學刊,18(1),1-18。
黃明輝(2017)。漸進式探究實驗以提升問題解決能力。大學教學實務與研究學刊,1(2),69-93。
黃榮貴(2002)。低成就學生之學習輔導。屏縣教育季刊,12,16-21。
黃曉嵐、蔡淑君譯(2014)。創造力:理論與當代議題面面觀 (原作者:Kaufman, J. C., & Sternberg, R. J.)。臺北市:華騰文化。
曾清旗(2017)。談推動12年國教新課程綱要理念、目標、核心素養及其面臨之挑戰—以技術型高級中等學校為例。臺灣教育評論月刊。7(3)146-154。
湯偉君、邱美虹(1999)。創造性問題解決(CPS) 模式的沿革與應用。科學教育月刊,223,2-20。
教育部(2003)。國民中小學九年一貫課程綱要:自然與生活科技學習領域。臺北市:教育部。
教育部(2008)。九年一貫課程綱要自然與生活科技學習領域。臺北市:教育部。
教育部(2013)。十二年國民基本教育課程綱要總綱。臺北市:教育部。
教育部(2016)。十二年國民基本教育課程綱要自然與生活領域課程手冊(更新第三版)。臺北市:教育部。
教育部(2018)。十二年國民基本教育課程綱要自然與生活領域課程手冊(更新第五版)。臺北市:教育部。
陳玉樹、胡夢鯨(2008)。任務動機與組織創新氣候對成人教師創意教學表現之影響:階層線性模式分析。教育心理學報,40(2)1,79-198。
陳玉樹、郭銘茜(2013)。四向度成就目標對教師創意教學表現之影響: 創意自我效能的中介效果與團隊學習行為的跨層級調節效果檢定。教育科學研究期刊,58(3),85-120。
陳月英(2001)。提升低成就學生的學習動機。國教輔導,41(2),21-26。
陳昭宇(2016)。探究遊戲在體育教學的價值:經驗學習理論的應用。中華體育季刊,30(2),97-104。
陳雅君、洪瑞兒、佘曉清、林煥祥(2016)。臺灣學生科學素養與科學教學者研究成果表現之發展趨勢探討。科學教育學刊,24(4),333-354。
傅昭銘(2006)。大學物理實驗教學的思維。物理雙月刊,28(3),573-579。
楊秀停、王國華(2007)。實施引導式探究教學對於國小學童學習成效之影響。科學教育學刊,15(4),439-459。
楊惟程(2015)。論證為主的探究教學模式對六年級學童探究學習影響之研究(未出版之博士論文)。國立彰化師範大學,彰化縣。
楊國樞、文崇一、吳聰賢、李亦園(2001)。社會及行為科學研究法 (上冊),臺北市:東華書局。
葉玉珠、吳靜吉、鄭英耀(2000)。影響科技與資訊產業人員創意發展的因素之量表編製。師大學報:科學教育類,45(2),39-63。
葉玉珠(2010)。動機與學習。載於葉玉珠(主編)、高源令、修慧蘭、陳世芬、曾慧敏、王佩玲、陳惠萍著,教育心理學第二版(295-342頁)。臺北市:心理出版社。
詹志禹(2003)。課程創新與教師的自我創化—系統演化的觀點。教育資料集刊:教師專業發展專輯,28,145-172。
溫福星、邱皓政(2009)。組織研究中的多層次調節中介效果:以組織創新氣氛、組織承諾與工作滿意的實證研究為例。管理學報,26(2),189-211。
賈馥茗、簡茂發(1982)。我國國中學生科學才能之測量。國立臺灣師範大學教育研究所集刊,24,1-91。
黃莉郁、佘曉清、劉思瑋(2017)。臺灣學生科學素養的表現。載於佘曉清、林煥祥(主編),PISA 2015 學生的表現(1–22 頁)。臺北市,心理出版社。
鄭瑞洲、洪振方、黃臺珠(2016)。透過情境興趣教學策略促進高一學生之遺傳學學習。科學教育學刊,24(2),115-137。
蔡啟通、高泉豐(2004)。動機取向,組織創新氣候與員工創新行為之關係: Amabile 動機綜效模型之驗證。管理學報,21(5),571-592。
蔡執仲、段曉林、靳知勤(2005)。探究式實驗教學對國二學生理化學習動機之影響。科學教育學刊,13(3),289-315。
劉湘瑤(2009)。科學創造力的評量與發展-教師的科學創造力認識觀和教學實踐之探討(3/3)。行政院國家科學委員會專題研究成果報告(編號:96-2522-S-017-006),未出版。
賴志忠(2018)。營造多元探究情境培養學生問題解決能力。中等教育,69(3),142-154。
賴英娟(2006)。以結構方程模式檢驗國中生動機信念與創新支持對創新行為和創意表現之影響(未出版之博士論文)。國立臺灣科技大學,臺北市。
蕭佳純(2015)。國小學童科學創造力成長歷程之縱貫性分析。科學教育學刊,23(1),23-51。
韓順興(2005)。創造性探究教學對國中生理化科學習動機、創造力與學習成就之影響(未發表之碩士論文)。國立彰化師範大學,彰化縣。
謝立人(2002)。結合問題解決與合作學習策略實施於國中數學之行動研究(未出版之碩士論文)。國立彰化師範大學,彰化縣。
謝甫佩、洪振方(2004)。國小學生科學探究活動的課程設計及實施成果之個案研究。師大學報:科學教育類,49(2),61-86。
謝甫佩、洪振方(2006)。從匯合取向的觀點探討科學創造力的評量。科學教育月刊,291,11-23。
謝傳崇(2019)。正向教育:校本幸福課程的領導。教育研究月刊,298,94-108。
蕭佳純(2012)。國小學生內在動機、學科知識與創造力表現關聯之研究:教師創造力教學的調節效果。特殊教育研究學刊,37(3),89-113。
譚茗文(2012)。5E探究教學對七年級不同學習成就學生科學學習動機影響之行動研究(未發表之碩士論文)。國立彰化師範大學,彰化縣。
簡晉龍、任宗浩(2011)。邁向科學之路?臺灣中學生性別對科學生涯選擇意向 之影響。科學教育學刊,19(5),461-481。
簡頌沛、許瑛玿(2015)。科學探究教學。載於鄭榮輝(主編)、林陳涌,科學實作教學理論與實務(32-66頁)。臺北市:高等教育出版。
羅暉、王康友(2015)。科普教育藍皮書:中國科學教育發展報告。臺北市:社會科學文獻出版社。
蘇金豆(2013)。應用概念圖引導與動畫輔助技專生化學問題解決能力之探究。教育傳播與科技研究,103,37-60。

英文部分
Abraham, M. R., & Renner, J. W. (1986). The sequence of learning cycle activities in high school chemistry. Journal of Research in Science Teaching, 23(2), 121-143
Abrahams, I. (2009). Does practical work really motivate? A study of the affective value of practical work in secondary school science. International journal of science education, 31(17), 2335-2353.
Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, learning, and the psychological processes that mediate their relationship. Journal of Educational Psychology, 94(3), 545-561.
Al-Sabaty, I., & Davis, G. A. (1989). Relationship between creativity and right, left, and integrated thinking styles. Creativity Research Journal, 2(1-2), 111-117.
Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43(5), 997-1013.
Amabile, T. M. (1987). The motivation to be creative. In S. Isaksen (Ed.), Frontiers of creativity research: Beyond the basics (pp. 223-254). Buffalo, NY: Bearly Limited.
Amabile, T. M. (1996). Creativity in Context. Colorado, CO: Westview Press.
Amabile, T. M. (1983). The Social Psychology of Creativity. New York, NY: Springer-Verlag.
Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The Work Preference Inventory: assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66(5), 950-967.
Ambrose, M. L., & Kulik, C. T. (1999). Old friends, new faces: Motivation research in the 1990s. Journal of Management, 25(3), 231-292.
Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., & Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives, abridged edition. White Plains, New York, NY: Longman.
Bammens, Y. P. (2016). Employees' innovative behavior in social context: A closer examination of the role of organizational care. Journal of Product Innovation Management, 33(3), 244-259.
Bandura, A. (1994). Self-efficacy. In V. S. Ramachaudran (Ed.), Encyclopedia of human behavior (pp. 71-81). New York, NY: Academic Press.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: W. H. Freeman and Company.
Batey, M., Adrian, F., & Xeniya, S. (2010). Intelligence, general knowledge and personality as predictors of creativity. Learning and Individual Differences, 20(5), 532-535.
Beghetto, R. A. (2016). Creative learning: A fresh look. Journal of Cognitive Education and Psychology, 15(1), 6-23.
Benack, S., Basseches, M., & Swan, T. (1989). Dialectical thinking and adult creativity. Handbook of creativity (199-208). Boston, MA: Springer.
Besemer, S. P. (1998). Creative product analysis matrix: Testing the model structure and a comparison among products - Three novel chairs. Creativity Research Journal, 11(4), 333-346.
Bloom, B. S. (1956). Taxonomy of educational objectives. Cognitive Domain (pp. 20-24). New York, NY: McKay.
Buckley, J. A., & Kuh, G. D. (2009). Reinventing undergraduate education: Engaging college students in research and creative activities. The Review of Higher Education, 32(3), 419-420.
Brown, A. L. (1980). Metacognitive development and reading. In Spiro, Bruce & Brewer (Eds), Theoretical issues in reading comprehension: Perspectives from cognitive psychology, linguistics, artificial intelligence, and education, (pp.453-481). New Jersey, US.: Lawrence Erlbaum Associates., Inc.
Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA press.
Cheng, P. H., Yang, Y. T. C., Chang, S. H. G., & Kuo, F. R. R. (2016). 5E Mobile inquiry learning approach for enhancing learning motivation and scientific inquiry ability of university students. IEEE Transactions on Education, 59(2), 147-153.
Chu, K. W. S. (2009). Inquiry project‐based learning with a partnership of three types of teachers and the school librarian. Journal of the American Society for Information Science and Technology, 60(8), 1671-1686.
Chuang, L. M. (2007). The social psychology of creativity and innovation: Process theory (PT) perspective. Social Behavior and Personality: An International Journal, 35(7), 875-888.
Clapham, M. M. (2004). The convergent validity of the Torrance Tests of Creative Thinking and creativity interest inventories. Educational and Psychological Measurement, 64(5), 828-841.
Collette, A. T., & Chiappetta, E. C. (1994). Science instruction in the middle and science school. Columbus, OH: Merrill.
Costandi, S., Hamdan, A., Alareeni, B., & Hassan, A. (2019). Educational governance and challenges to universities in the Arabian Gulf region. Educational Philosophy and Theory, 51(1), 70-86.
Craft, A. (2005). Creativity in schools: Tensions and dilemmas. London, England: Routledge.
Csikszentmihalyi, M. (1988). Motivation and creativity: Toward a synthesis of structural and energetics approaches to cognition. New Ideas in Psychology, 6(2), 159-176.
Csikszentmihalyi, M. (2014). Motivation and creativity: Towards a synthesis of structural and energistic approaches to cognition. In Flow and the Foundations of Positive Psychology, 155-173.
Csikszentmihalyi, M.(1999). Implications of a systems perspective for the study of creativity. R. J. Sternberg (Ed.), The handbook of creativity (pp. 313-335). New York, NY: Cambridge University Press.
Deci, E. L., & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19(2), 109-134.
Demir, S. & Sahin, F. (2014a), Assessment of open-ended questions directed to prospective science teachers in terms of scientific creativity. ERPA Procedia - Social and Behavioral Sciences, 152, 692–697.
Demir S. & Sahin F. (2014b). Assessment of prospective science teachers’ metacognition and creativity perceptions and scientific toys in terms of scientific creativity. ERPA Procedia- Social and Behavioral Sciences, 152, 686–691.
Demir S. (2015), Perception of scientific creativity and self-evaluation among science teacher candidates. Journal of Education and Practice, 6(18), 181-184.
Deng, J.R. and Wang, Z.H. (2018) Research on self-organization ability of regional innovation system in China. Modern Economy, 9, 362-378
Denzin, N. K., & Lincoln, Y. S. (1994). Handbook of qualitative research. Newbury Park, CA: Sage publications, inc.
Eason, R., Giannangelo, D. M., & Franceschini III, L. A. (2009). A look at creativity in public and private schools. Thinking Skills and Creativity, 4(2), 130-137.
Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education. Perspectives from Classroom-Based Research. Dordrecht, Netherlands: Springer.
Farooq U. (2008). Supporting creativity: Investigating the role of awareness in distributed collaboration, The Pennsylvania State University, Retrieved from http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-2990/index.html
Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290–309.
Fisher, R. (2004). What is creativity? R. Fisher & M. Williams (Eds.), Unlocking Creativity - A Teacher's Guide to Creativity Across the Curriculum (pp. 6-20). London, United Kingdom: David Fulton Publishers.
Fisher, R., & Williams, M. (2004). Unlocking creativity - A teacher's guide to creativity across the curriculum. London, England: David Fulton Publishing.
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American psychologist, 34(10), 906-911.
Gagné, M., & Deci, E. L. (2005). Self determination theory and work motivation. Journal of Organizational Behavior, 26(4), 331-362.
George, J. M., & Zhou, J. (2001). When openness to experience and conscientiousness are related to creative behavior: an interactional approach. Journal of Applied Psychology, 86(3), 513-524.
Gruber, H. E., & Wallace, D. B. (1999). The case study method and evolving systems approach for understanding unique creative people at work. Handbook of Creativity (pp. 93-115), New York, NY: Cambridge University Press.
Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53, 267-293.
Guilford, J. P. (1968). Intelligence, creativity and their educational implications. San Diego, CA: R. R. Knapp.
Hart, C., Mulhall, P., Berry, A., Loughran, J., & Gunstone, R. (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 37(7), 655-675.
Hausman, C. R. (1987). Philosophical perspectives on the study of creativity. In S. G. Isaksen (ed.), Frontiers of creativity research, beyond the basics (pp. 380-389). Buffalo, NY: Bearly Limited.
Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127.
Hmelo-Silver, C. E. (2004). Problem-based learning: What and how do students learn? Educational psychology review, 16(3), 235-266.
Hu, B., & Zhao, Y. (2016). Creative self-efficacy mediates the relationship between knowledge sharing and employee innovation. Social Behavior and Personality: An International Journal, 44(5), 815-826.
Hu, S., Scheuch, K., Schwartz, R., Gayles, J. G., & Li, S. (2008). Reinventing undergraduate education: Engaging college students in research and creative activities. ASHE Higher Education Report, 33(4), 1-103.
Hu, W. P., & Adey (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389-403.
Hung, J. F., & Ko, C. H. (2017). The effectiveness of creative inquiry model on experimental teaching. US-China Education Review, 7(8), 353-365.
Jiang, Z. M. (2000). Science in China. Science, 288(5475), 2317.
Kanli E. (2014).The scientific basis of scientific creativity: Model proposal, Turkish Journal of Superior Intelligence and Education, 4 (1), 37-50.
Kaufman, J. C., & Sternberg, R. J. (Eds.). (2010). The Cambridge handbook of creativity. New York, NY: Cambridge University Press.
Kim, M. C., Hannafin, M. J., & Bryan, L. A. (2007). Technology‐enhanced inquiry tools in science education: An emerging pedagogical framework for classroom practice. Science Education, 91(6), 1010-1030.
Kleysen, R. F., & Street, C. T. (2001). Toward a multi-dimensional measure of individual innovative behavior. Journal of intellectual Capital, 2(3), 284-296.
Krathwohl, D. R. (2002). A revision of Bloom's taxonomy: An overview. Theory into Practice, 41(4), 212-218.
Kuhn, D; Pease, M (2008). What needs to develop in the development of inquiry skills? Cognition and Instruction, 26 (4), 512–559.
Lin C., Hu W., .Adey, P & Shen, J. (2003). The influence of case on scientific creativity. Research in Science Education, 33(2), 143-162.
Lin, F. J., & Chin, E.T. (2018). The Assessment of Students’ Scientific Creativity by the Analysis of Grey Structure Modeling-In the Case of Green Energy. Journal of Grey System, 21(1), 1-12.
Lin, F. J., Tuan, H.L.,& Chin, E.T. (2017).The Assessment of Students’ Scientific Creativity in the ICBOI teaching module by the Grey Relational Analysis-A Case Study Investigation. International Journal of Kansei Information, 8(4), 115-127.
Lin, H., Hong Z. & Chen.Y. (2013). Exploring the Development of College Students' Situational Interest in Learning Science. International Journal of Science Education, 35(13), 2152–2173.
Livingston, L. (2010). Teaching creativity in higher education. Arts Education Policy Review, 111(2), 59-62.
Lubart, T. I. (1999). Componential models. Encyclopedia of Creativity, 1, 295-300.
Lumsden, C. J. (1999). Evolving creative minds: Stories and mechanisms. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 153-168). New York, NY, US: Cambridge University Press.
Martens, R., Bastiaens, T., & Kirschner, P. A. (2007). New learning design in distance education: The impact on student perception and motivation. Distance Education, 28(1), 81-93.
Martens, R., Gulikers, J., & Bastiaens, T. (2004). The impact of intrinsic motivation on elearning in authentic computer tasks. Journal of Computer Assisted Learning, 20(5), 368-376.
Martindale, C. (2007). Creativity, primordial cognition, and personality. Personality and Individual Differences, 43(7), 1777-1785.
Marzano, R. J.; and others (1988). Dimensions of thinking: A framework for curriculum and instruction. Washington, DC.:The Association for Supervision and Curriculum Development.
Mauer, R., Neergaard, H., & Linstad, A. K. (2017). Self-efficacy: Conditioning the entrepreneurial mindset. In Revisiting the Entrepreneurial Mind. 293-317.
Mayer, R. E. (1998). Cognitive, metacognitive, and motivational aspects of problem solving. Instructional science, 26(1-2), 49-63.
Mayer, E. R. (1999) Fifty years of creativity research, Handbook of Creativity, New York, NY: Cambridge University Press.
McCraw, Thomas K. (2009). Prophet of innovation: Joseph Schumpeter and creative destruction. Cambridge, MA: Belknap Press.
Millar, G., Dahl, C., & Kauffman, J. (2011). Testing the whole mind-educating the whole child. Alberta Teachers’ Association (ATA) Magazine. Accessed June 21 from: http://www.teachers.ab.ca/Publications/ATA%20Magazine/Volume91/Number3/Pages/Testingthewholemind.aspx
Mumford, M. D., & Gustafson, S. B. (1988). Creativity syndrome: Integration, application, and innovation. Psychological Bulletin, 103(1), 27-43.
National Research Council. (1996a). The national science education standards. Washington, DC: National Academy Press.
National Research Council. (1996b). The role of scientists in the professional development of science teachers. Washington, DC: National Academy Press.
National Research Council. (2000a). Inquiry and the national science education standards. Washington DC: National Academy Press.
National Research Council. (2000b). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academies Press.
National Research Council. (2012). Framework for science education. Washington, DC: National Academy of Science.
Nelson, R. M., & DeBacker, T. K. (2008). Achievement motivation in adolescents: The role of peer climate and best friends. The Journal of Experimental Education, 76(2), 170-189.
Nickerson, R. S. (1999). 20 Enhancing Creativity. Handbook of creativity, New York, NY: Cambridge University Press.
Next generation science standard, NGSS. (2018). Understand NGSS Design. Retrieved from https://www.nextgenscience.org/instruction-and-assessment-supports/understanding-ngss-design
Oregon Department Education (2011). Teaching and learning to standards: science
Retrieved from
https://www.oregon.gov/ode/educator-resources/standards/socialsciences/Pages/Standards.aspx
Palmer, D. (2009). Student interest generated during an inquiry skills lesson. Journal of Research in Science Teaching, 46(2), 147-165.
Park, G., Lubinski, D., & Benbow, C. P. (2008). Ability differences among people who have commensurate degrees matter for scientific creativity. Psychological Science, 19(10), 957-962.
Peters, M. A. (2010). Three Forms of the Knowledge Economy: Learning, Creativity and Openness. British Journal of Educational Studies, 58(1), 67-88.
Ring-Whalen. E., Dare, E., Roehrig, G., Titu P., Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6(4), 343-362.
Rodrigues, M., & Franco, M. (2018). Measuring the Performance in Creative Cities: Proposal of a Multidimensional Model. Sustainability, 10(11), 4023-4043.
Runco, M. A., & Acar, S. (2012). Divergent thinking as an indicator of creative potential. Creativity Research Journal, 24(1), 66-75.
Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54-67.
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68-78.
Saracho, O. (2012). Creativity theories and related teachers’ beliefs. Early Child Development and Care, 182(1), 35-44.
Sattler, P. (2012). Education governance reform in Ontario: Neoliberalism in context. Canadian Journal of Educational Administration and Policy, 128, 1-28.
Schechter, C. (2018). Enacting president Trump’s leadership contract with educators: Toward a communal leadership perspective. Journal of Educational Administration and History, 50(1), 32-40.
Schiefer, J., Golle, J., Tibus, M., & Oschatz, K. (2019). Scientific reasoning in elementary school children: Assessment of the inquiry cycle. Journal of Advanced Academics, 30(2), 144-177.
Shriki, A. (2013). A model for assessing the development of students' creativity in the context of problem posing. Creative Education, 4(7), 430.-439
Simonton, D. K. (2004). Creativity as a Constrained Stochastic Process. In R. J. Sternberg, E. L. Grigorenko, & J. L. Singer (Eds.), Creativity: From potential to realization (pp. 83-101). Washington, DC, US: American Psychological Association.
Stariha, W. E., & Walberg, H. J. (1995). Childhood precursors of women's artistic eminence. The Journal of Creative Behavior, 29(4), 269-282.
Starko, A. J. (2005). Creativity in the classroom: Schools of curious delight. London, England: Lawrence Erlbaum Associates.
Sternberg, R. J. (1999). Handbook of creativity. New York, NY: Cambridge University Press.
Sternberg, R. J., & Sternberg, R. J. (Eds.). (1999). New York, NY: Handbook of creativity. Cambridge University Press.
Torrance, H. (1995). Evaluating authentic assessment: Problems and possibilities in new approaches to assessment. Buckingham, UK: Open University Press.
Treffinger, D., & Isaksen, S. (1992). Creative problem solving: An introduction. Center for Creative Learning. Waco, Texas: Prufrock Press Inc.
Treffinger, D. J., Isaksen, S. G., & Dorval, K.B. (1994). Creative problem solving: An overview. In M. A. Runco (Ed.), Problem finding, problem solving, and creativity. New Jersey: Ablex Publishing.
Turner, S. (2013). Teachers’ and pupils’ perceptions of creativity across different key stages. Research in Education, 89, 23-40.
Vander Vegt, G. S., & Janssen, O. (2003). Joint impact of interdependence and group diversity on innovation. Journal of management, 29(5), 729-751.
Vanderlee, M. L., Youmans, S., Peters, R., & Eastabrook, J. (2012). Evaluation of the implementation of the Ontario full-day early learning-kindergarten program. Kingston, Canada: Social Program Evaluation Group, Faculty of Education, Queen’s University.
West, C. (1989). The American evasion of philosophy: A genealogy of pragmatism. New York, NY: Springer.
Wiles, J., & Bondi, J. (1980). Teaching for creative thinking in the intermediate grades. Roeper Review, 3(1), 4-7.
Wiles, J., & Bondi, J. (2001). The new American middle school: Educating preadolescents in an era of change. Columbus, OH: Merrill.
Williams, F. E. (1972). Encouraging creative potential. New Jersey, NJ: Educational Technology Publications.
Woodman, R. W., & Schoenfeldt, L. F. (1990). An interactionist model of creative behavior. The Journal of Creative Behavior, 24(4), 279-290.
Wu T. Y., Tuan, H. L., Hsieh C. H., & Chin C. C. (2013, July). The validation of the motivation in learning science questionnaire. In Y. Y. Yeung(chair),University students’ choices of science and mathematics related programmes in mainland China. Symposium conducted at the third International Conference of East-Asian Association for Science Education, Hong Kong, China.
Yang, K. K., Lin, S. F., Hong, Z. R., & Lin, H. S. (2016). Exploring the assessment of and relationship between elementary students’ scientific creativity and science inquiry. Creativity Research Journal, 28(1), 16-23.
Yarbrough, J. (2011). U.S. Patent. No. 7,896,736. Washington, DC: U.S. Patent and Trademark Office.
Yeloglu, H. O. (2007). Innovation and creativity discussions in organization, individual and group context. Ege Academic Review, 7(1), 133-152.
Zhao, D.L., Gao, W. and Li, Y.L. (2011). Research on the Influence of Knowledge Transfer Mode on Regional Innovation Capability. Journal of Scientific and Technological Progress, 28, 32-37.
Zhou, J., & George, J. M. (2001). When job dissatisfaction leads to creativity: Encouraging the expression of voice. Academy of Management journal, 44(4), 682-696.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE