:::

詳目顯示

回上一頁
題名:融入後設認知鷹架策略於開放式探究之合作式行動研究
作者:葉辰楨
作者(外文):Chen-Jane Yeh
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:黃世傑 博士
王國華 博士
學位類別:博士
出版日期:2010
主題關鍵詞:Vee圖後設認知鷹架策略開放式探究活動概念圖Vee mapmetacognitive scaffolding strategiesopen-ended inquiryconcept map
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:97
本研究旨在以合作式行動研究方式,邀請一資深科學教師與研究者共同發展「融入後設認知鷹架策略之科學探究教學模式」,將Gowin Vee圖和概念圖融入科展寫作模式中,並評估其成效。研究對象包括合作教師,及其在研究期間授課之三所國中自然科學社團的83位學生。
資料收集分析以質性研究方式進行,收集學生的Vee圖、概念圖、階段性小組自評表、小組科學寫作作品;教學現場觀察錄音、錄影、小組討論與師生對談錄音;合作教師晤談及小組晤談等質性資料。收集之資料以持續比較法進行編碼(Bogdan & Biklen, 1992),並以三角校正法交叉比對不同來源資料間的一致性,以提升本研究發現的可靠性。
研究結果顯示,經實施與調整之後,本研究所發展的「融入後設認知鷹架策略之科學探究教學模式」包括由meta-Vee圖(由Gowin的 Vee圖修改)、概念圖和探究歷程檢核表所建立的結構性鷹架,以及教師採取之動態鷹架策略,將其融入於「科學競賽」、「科展作品評析」、及「開放式探究」等三階段科學探究教學模式中。另外,最適合的模式運作方式,是透過反覆與螺旋式的鷹架策略運用,逐步引導學生理解並進行科學探究過程,學生在真實的探究活動中形成主題,拓展認知架構,並透過階段性自我評量建立自我評估與自我調節的機制。而由學生的學習表現,發現結構式鷹架對於探究活動的「計畫」與「評估」有所助益;動態鷹架則扮演啟動學生反思的角色,展現較強的「自我評估」與「自我調節」功能。而隨著探究活動的進展,學生的認知架構與探究技能都所提升,教師扮演鷹架提供者的角色便逐步淡出,學生則展現其主動且獨立進行探究活動的能力。
本研究以合作式行動研究發展探究教學模式,藉由參與者之間不同經驗的引領,嘗試科教理論與教學實務的結合,在行動與反思的過程中,教學與研究互為回饋機制,不但教師實施探究教學的實務知識逐步成長,行動研究之過程與研究發現也更為精煉,在教學與研究兩個面向都有所提升。
The purpose of this research is to integrate the Gowin’s Vee and concept map with the writing modes of scientific fairs, and to evaluate its effectiveness by means of collaborative action research. A senior science teacher was invited to develop collectively with the researcher “an instructional model for scientific inquiry integrated with metacognitive scaffolding strategies”. The subjects of the research include the collaborating teacher, and 83 students from natural science clubs in three junior high schools, whom the teacher taught during the course of the research.
Data collection and analysis were done qualitatively. Qualitative data were collected, such as students’ Vee map; concept map; groups’ staged self-assessment forms; recordings and videos of observation from the scenes of instruction; recordings of groups’ discussions and talks between the teacher and the students; interviews with the collaborating teacher; interviews with the student groups, etc. The data collected were coded with “constant comparative method” (Bogdan & Biklen, 1992). “Triangulation” was employed to cross-check the agreement among the data from different sources, in order to enhance the credibility of the findings in this research.
The findings indicate that after implementations and modifications, “the instructional model for scientific inquiry integrated with metacognitive scaffolding strategies” developed in this research included the structural scaffolding constructed with meta-Vee map (revised from Gowin’s Vee map) , concept maps, and the checklist of inquiry courses, along with the dynamic scaffolding strategies employed by the teacher. All scaffoldings were incorporated into the three-staged instruction model of scientific inquiry that consists of “science competition”, “critiques on science fairs”, and “open-ended science inquiry”. The results also show that, the most suitable operation of the model is to gradually guide the students to comprehend and to conduct scientific inquiry through application of recursive and spiral scaffolding strategies. Students would form their themes in actual inquiry, expand their cognitive structures, and establish the mechanism of self-evaluation and self-adjustment through staged self-assessment. From the students’ learning performances, it was revealed that structural scaffoldings are helpful to “planning” and “evaluation” of inquiry; while dynamic scaffoldings played the role of activating students’ reflections, and showed stronger function of “self-evaluation” and “self-adjustment”. With the progress of the activities, students’ cognitive structures and inquiry skills were both enhanced. The teacher’s role as a provider of scaffoldings faded out, while the students showed their abilities of actively and independently conducting inquiry.
The research developed an instruction model of inquiry with collaborative action research, making an attempt of integrating science education theories and teaching practice through the guidance by the diverse experiences of the participants. In the process of actions and reflections, instruction and research made a mechanism of reciprocal feedback. Not only teachers’ practical knowledge of implementing inquiry instruction gradually developed, but the process and findings of action research became more refined and promoted in both aspects of instruction and research.
參考文獻
中文部分
王月春(2004)。科學史融入理化教學促進學生科學探究能力之研究。國立高雄師範大學化學系碩士論文,未出版,高雄市。
林淑靜(2006)。國中自然與生活科技領域實施開放式探究教學之研究-以「磁與電流」單元為例。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
洪文東(2000)。從問題解決的過程培養學生的科學創造力。屏師科學教育,11,52-62。
吳坤璋、吳裕益和黃台珠(2005)。科學探究能力測驗的編製與信、效度考驗。測驗學刊,52(2),119-148。new window
侯香伶(2002)。科學探究活動中的科學本質面貌對國一生科學本質觀之影響。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
高玉齡(2006)。以「乾冰」為主題教學模組融入自然與生活科技領域教學之研究。國立高雄師範大學化學系碩士論文,未出版,高雄市。
張俊彥和翁玉華(2000)。我國高一學生的問題解決能力與其科學過程技能之相關性研究。科學教育學刊,8(1),35-55。
張莞珍(1997)。鷹架理論在成人教學實務之應用。成人教育,40,43-51。
陳品華(1997)。從認知觀點談情境學習與教學。教育資料與研究,15,53-59。new window
陳姿妙(2005)。利用探究式教學提昇七年級學生科學學習成效之行動研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
陳榮祥和江新合(2006)。V圖式科學探究指導模式之開發與測試。臺中教育大學學報:數理科技類,20(2),69-98。
陳慧娟(1998)。情境學習理論的理想與現實。教育資料與研究,25,47-55。new window
許素(2002)。培育國小高年級學童科學探究能力:製作科學展覽的經驗與反省。教育資料與研究,48,24-30。new window
郭靜芳(1997)。國小資優生後設認知與推理思考能力相關之研究。國立嘉義師範學院國民教育研究所,碩士論文,未出版,嘉義縣。
教育部(2003)。國民中小學九年一貫課程綱要。台北市:教育部。new window
黃瑞琴(1991)。質的教育研究法。台北市:心理出版社。
黃鴻博(2000)。兒童科學探究活動遭遇問題的探討。國立臺中師院學報,14,389-409。new window
楊秀停(2003)。以合作式行動研究協助國小自然科教師實施探究式教學。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
熊召弟(1996)。台北公立高中(高一)學生科學過程技能和邏輯思考能力之探討研究。台北師院學報,9,545-578。
劉宏文(2001)。高中學生進行開放式科學探究活動之個案研究。國立彰化師範大學科學教育研究所博士論文,未出版,彰化市。new window
魯俊賢和吳毓瑩(2007)。過程技能之二階段實作評量:規劃、實踐與效益探究。科學教育學刊,15(2),215-239。
蔡明致、張文華和白榮銓(2001)。設計模組化科學探究歷程之行動研究。論文發表於中華民國第十七屆科學教育學術研討會。高雄市:高雄師大。
蔡明致(2002)。發展輔導模組協助國中生進行小組科學探究之行動研究。發表於台中市九十一學年度教師行動研究論文徵選論文集(pp. 320-329)。台中市:台中市國教輔導團。
蔡明致、張文華(2003)。發展中小學合作進行開放科學探究模組之行動研究。教育部九十二年科學教育專案計畫成果彙編(pp. 13-20)。台北市:教育部。
蔡明致(2008)。以AA Vee 圖策略引導七年級學生進行科學探究之研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
鄭麗華(2002)。以探究式實驗活動提升國二學生參與實驗活動及過程技能之行動研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
賴慶三和高汶旭(2004)。國小專題本位科學展覽活動教學之研究。臺北市立師範學院學報,35(2),259-284。
蘇麗涼(2002)。國中理化實施探究導向教學對學生學習成效影響之研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。

英文部分
American Association for the Advancement of Science. (1989). Project 2061: Science for all Americans. Washington, D.C.: AAAS Press.
American Association for the Advancement of Science. (1993). Benchmarks for science literacy. Washington, D.C.: AAAS Press.
Åhlberg, M., & Ahoranta, V. (2002). Two improved educational theory based tools to monitor and promote quality of geographical education and learning. International Research in Geographical and Environmental Education, 11(2), 119-137.
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1-12.
Anderson, D., & Nashon, S. (2007). Predators of knowledge construction: Interpreting students' metacognition in an amusement park physics program. Science Education, 91(2), 298-320.
Bianchini, J. A. (1997). Where knowledge construction, equity, and context intersect: Student learning of science in small groups. Journal of Research in Science Teaching, 34(10), 1039-1065.
Bogdan, R. C., & Biklen, S. K. (1992). Qualitative research for education: An introduction to theory and methods (2nd ed.). Boston: Allyn and Bason.

Brown, J. S., Collins, A., & Duguid, P. (1996). Situated cognition and culture of learning. In McLellan, H. (Ed.), Situated learning perspectives (pp. 19-44). NJ: Educational Technology Publication, Inc.
Brown, R. A. J., & Renshaw, P. D. (2000). Collective argumentation: A sociocultural approach to reframing classroom teaching and learning. In H. Cowie & G. Van der Aalsvoort (Eds.), Social interaction in learning and instruction (pp. 52-66). Amsterdam: Pergamon.
Carin, A. A., Bass, J. E., & Contant, T. L. (2003). Teaching science as inquiry. NJ: Pearson Education, Inc.
Carlsen, W. S. (1993). Teacher knowledge and discourse control: Quantitative evidence from novice biology teachers' classrooms. Journal of Research in Science Teaching, 30(5), 471-481.
Carillo, L., Lee, C., & Rickey, D. (2005). Enhancing science teaching by doing more: A framework to guide chemistry students' thinking in the laboratory. Science Teacher, 72(7), 60-65.
Case, J., & Gunstone, R. (2006). Metacognitive development: A view beyond cognition. Journal Research in Science Education, 36(1-2), 51-67.
Cazden, C. B. (1988). Classroom discourse: The language of teaching and learning. Portsmouth, NH: Heinemann.
Collins, A., Brown, J.S., & Newman, S.E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing and mathematics. In L.B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453-494). Hillsdale, NJ: Erlbaum.
Conner, L., & Gunstone, R. (2004). Conscious knowledge of learning: Accessing learning strategies in a final year high school biology class. International Journal of Science Education, 26(12), 1427-1443.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37(9), 916-937.

Cross, D.R., & Paris, S.G. (1988). Development and instructional analyses of children’s metacognition and reading comprehension. Journal of Educational Psychology, 80, 131-142.
de Jong, T., & van Joolingen, W. R. (1998). Scientific discovery learning with computer simulations of conceptual domains. Review of Educational Research, 68(2), 179-201.
Ellis, R. (1994). The study of second language acquisition. Oxford: Oxford University Press.
Flavell, J. H. (1981). Cognitive monitoring. In W. P. Dickson (Ed.), Children's oral communication skills. New York: Academic Press.
Fund, Z. (2007). The effects of scaffolded computerized science problem-solving on achievement outcomes: A comparative study of support programs. Journal of Computer Assisted Learning, 23(5), 410-424.
Funk, H. J., Fiel, R. L., Okey, J. R., Jaus, H. H., & Sprague, C. S. (1985). Learning science process skills(pp. 35-60). IA: Kendall/ Hunt.
Georghiades, P. (2004). From the general to the situated: Three decades of metacognition. International Journal of Science Education, 26(3), 365-383.
Georghiades, P. (2004). Making pupils’ conception of electricity more durable by means of situated metacognition. International Journal of Science Education, 26(1), 85-99.
Gess-Newsome, J. (1999). Secondary teachers’ knowledge and beliefs about subject matter and their impact on instruction. In J. Gess-Newsome & N. G. Lederman (Eds.), Examining pedagogical content knowledge: The construct and its implications for science education (pp. 51-94). Dordrecht: Kluwer Academic Press.
Gott, R., & Duggon, S. (1995). Investigative work in the science curriculum. Bristol, PA: Open University Press.
Graham, S., & Harris, K. R. (2000). The role of self-regulation and transcription skills in writing and writing development. Educational Psychologist, 35(1), 3-12.
Greeno, J. G., & Collins, A. M. (1996). Cognition and learning. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 15-46). New York: Macmillan.
Gunstone, R. F., & Mitchell, I. J. (1998). Metacognition and conceptual change. In J. J. Mintzes, J. H. Wandersee and J. D. Novak (Eds.), Teaching science for understanding: A human constructivist view (pp. 134–163). San Diego: Elsevir Academic Press.
Hacker, D. J. (1998). Metacognition: Definitions and empirical foundations. In D. J. Hacker, J. Dunlosky, A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 1-24). NJ: Lawrence Erlbaum Associates.
Harlan, W., & Jelly, S. (1990). Developing science in the primary classroom (pp.46-48). NH: Heinemann.
Helms-Lorenz, M., & Jacobse, A. E. (2008). Metacognitive skills of the gifted from a cross-cultural perspective. In M. F. Shaughnessy, M.V. E. Veenman & C. K. Kennedy (Eds.), Meta-Cognition: A recent review of research, theory and perspectives (pp. 3-43). New York: Nova Science Publishers.
Herron, M. D. (1971). The nature of science enquiry. School Review, 79(2), 171-212.
Hodson, D. (1993). Re-thinking old ways: Towards a more critical approach to practical work in school science. Studies in Science Education, 22(1), 85-142.
Hogan, K., & Pressley, M. (1997). Scaffolding scientific competencies within classroom communities of inquiry. In K. Hogan & M. Pressly (Eds.), Scaffolding students learning: Instructional approaches & issues (pp. 74-107). Cambridge: Brooklins Books.
Hurd, P. D. (1998). Scientific literacy: New minds for a changing world. Science Education, 82(3), 407-416.
Jacobs, J. E., & Paris, S. G. (1987). Children's metacognition about reading: Issues in definition, measurement, and instruction. Educational Psychologist, 22(3-4), 255-278.

Jegede, O. J., & Olajide, J. O. (1995). Wait-time, classroom discourse, and the influence of sociocultural factors in science teaching. Science Education, 79(3), 233-249.
Keselman, A. (2003). Supporting inquiry learning by promoting normative understanding of multivariable causality. Journal of Research in Science Teaching, 40(9), 898-921.
Keys, C. W. (2000). Investigating the thinking processes of eighth grade writers during the composition of a scientific laboratory report. Journal of Research in Science Teaching, 37(7), 676-690.
King, J. A., & Lonnquist, M. P. (1994). A review of writing on action research (1944-present). Unpublished manuscript.
Kirby, N. F., & Downs, C. T. (2007). Self-assessment and the disadvantages students: Potential for encouraging self-regulated learning. Assessment and Evaluation in Higher Education, 32, 475-494.
Lazarowitz, R., & Hertz-Lazarowitz, R. (1998). Cooperative learning in the science curriculum. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 449-467). Dordrecht: Kluwer Academic Press.
Leou, M., Abder, P., Riordan, M. & Zoller, U. (2006). Using HOCS learning as a pathway to promote science teachers’ metacognitive development. Research in Science Education, 36(1-2), 69-84.
Marx, R. W., Blumenfeld, P. C., Krajcik, J. S., Fishman, B., Soloway, E., Geier, R., & Tal, R. T. (2004). Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform. Journal of Research in Science Teaching, 41(10), 1063-1080.
Millar, R. (1989). Bending the evidence: The relationship between theory and experiment in science education. In R. Millar (Ed.), Doing science: Images of science in science education(pp. 62-82). Philadelphia: Falmer.

Millar, R., Lubben, F., Got, R., & Duggan, S. (1994). Investigating in the school science laboratory: Conceptual and procedural knowledge and their influence on performance. Research Papers in Education, 9(2), 207-248.
Millar, R., & Osborne, J. F. (Eds.) (1998). Beyond 2000: Science education for the future. London: King's College London.
Mintzes, J. J., & Novak, J. D. (1999). Assessing science understanding: The epistemological vee diagram. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Assessing science understanding: A human constructivist view (pp. 42-71). San Diego: Elsevir Academic Press.
Moje, E. B. (1995). Talking about science: An interpretation of the effects of teacher talk in a high school science classroom. Journal of Research in Science Teaching, 32(4), 349-371.
Naylor, P., & Cowie, H. (2000). Learning the communication skills and social processes of peer support: A case study of good practice. In H. Cowie & G. Van der Aalsvoort (Eds.), Social interaction in learning (pp. 93-103). Amsterdam: Pergamon.
Ngeow, K., & Kong, Y. S. (2001). Learning to learn: Preparing teachers and students for problem-based learning. (ERIC Document Reproduction Service No. ED 457524)
National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
National Research Council. (2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. Washington, DC: National Academy Press.
Novak, J. D. (1990). Concept maps and Vee diagrams: Two metacognitive tools for science and mathematics education. Instructional Science, 19, 29-52.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.
Olson, S., & Loucks-Horsley, S. (Eds.). ( 2000). Inquiry and the National Science Education Standards: A guide for teaching and learning. Washington, DC: National Academies Press.
Oregon Department of Education. (2008). 2002 - 2008 Official Scientific Inquiry Scoring Guide. Retrieved July 9, 2009, from http://silverfalls.k12.or.us/staff/read_shari/asmtsciscorguide0208engbc.pdf
Padilla, M. J. (1991). Science activities, process skills, and thinking. In S. M. Glynn, R. H. Yeany & B. K. Britton (Eds.), The psychology of learning science (pp. 205-217). NJ: Lawrence Erlbaum Associates.
Paris, S. G., Lipson, M. Y., & Wixson, K. (1983). Becoming a strategic reader. Contemporary Educational Psychology, 8, 293-316.
Paris, S. G., & Paris, A. H. (2001). Classroom application of research on self-regulated learning. Educational Psychologist, 36(2), 89-101.
Polman, J. L., & Pea, R. D. (1997, March). Transformative communication in project science learning discourse. Paper presented at the annual meeting of the American Educational Research Association, Chicago.
Polman, J. L., & Pea, R. D. (2001). Transformative communication as a cultural tool for guiding inquiry science. Science Education, 85(2), 223-238.
Quintana, C., Meilan Z., & Krajcik, J. (2005). A framework for supporting metacognitive aspects of online inquiry through software-based scaffolding. Educational Psychologist, 40(4), 235-244.
Roth, W. M. (1995). Authentic school science: Knowing and learning in open inquiry science laboratories. Dordrecht: Kluwer Academic Press.
Tabak, I., Smith, B. K., Sandoval, W. A., & Reiser, B. J. (1996). Combining general and domain-specific strategic support for biological inquiry. In C. Frasson, G. Gauthier, & A. Lesgold (Eds.), Intelligent tutoring systems: Third International Conference, ITS ’96 (pp. 288-296). Montreal: Springer-Verlag.
Tamir, P. (1989). Training teachers to teach effectively in the laboratory. Science Education, 73(1), 59-69.
Tobin, K., Briscoe, C., & Holman, J. (1990). Overcoming constraints to effective elementary science teaching. Science Education, 74(4), 409-420.

Tobin, K., Tippins, D. J., & Gallard, A. J. (1994). Research on instructional strategies for teaching science. In D. L. Gabel (Ed.), Handbooks of research on science teaching and learning (pp. 45-93). New York: Macmillan.
Van der Aalsvoort, G., & Harinck, F. J. H. (2000). Studying social interaction in instruction and learning: Methodological approaches and problems. In H. Cowie & G. Van der Aalsvoort (Eds.), Social interaction in learning (pp. 93-103). Amsterdam: Pergamon.
Van Driel, J. H., Beijaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers’ practical knowledge. Journal of Research in Science Teaching, 38(2), 137-158.
Wang, X., Bernas, R., & Eberhard, P. (2001). Effects of teachers verbal and non-verbal scaffolding on everyday classroom performance of students with down syndrome. International Journal of Early Years Education, 9(1), 71-80.
Watson, F. R. (2004). Students’ discussions in practical scientific inquiries. International Journal of Science Education, 26(1), 25-45.
Webb, N.M., & Palincsar, A. S. (1996). Group processes in the classroom. In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology (pp. 841-871). New York: Macmillan.
White, B., & Frederiksen, J. (2005). A theoretical framework and approach for fostering metacognitive development. Educational Psychologist, 40(4), 211-223.
Wilson, J., & Livingston, S. (1996). Process skills enhancement in the STS classroom. In R. E. Yager (Ed.), Science/Technology/Society as reform in science education (pp. 59-69). Albany, NY: State University of New York Press.
Yager, R. E. (2000). A vision for what science education should be like for the first 25 years of a new millennium. School Science and Mathematics, 100(6), 327-341.
Yore, L. D., & Treagust, D. F. (2006). Current realities and future possibilities: Language and science literacy- Empowering research and informing instruction. International Journal of Science Education, 28(2/3), 291-314.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE