:::

詳目顯示

回上一頁
題名:職場就業力為導向之技術型高中專題實作能力指標建構與驗證研究:以土木建築群為例
作者:陳定宏
作者(外文):Chen,Ting-Hung
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
指導教授:陳繁興
廖錦文
學位類別:博士
出版日期:2017
主題關鍵詞:就業力專題實作能力指標土木建築群EmployabilitySpecial Project CoursesCompetence IndicatorsDepartments of Civil Engineering and Architecture
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(1) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:18
摘要
本研究旨在建構「職場就業力為導向之技術型高中土木建築群學生專題實作能力指標」,並據此針對技術型高中土木建築群學生驗證其能力現況。本研究採用德懷術問卷調查法徵詢德懷術專家意見與建議,進行三回合反覆修正、合併、增減問卷,採用眾數、平均數、標準差、柯-史單一樣本考驗和層級分析法(Analytic hierarchy process, AHP)進行分析,俟專家意見取得一致及其重要程度等級,建構出核心能力指標,並針對104學年度技術型高中土木建築群學生合計268位實施驗證,進行重要性與表現度(Importance- performance analysis, IPA)分析,並結合層級分析法(AHP)所得之專家權重值與學生之重要性與表現度(IPA)結果進行探討分析。
本研究發現,如下所述:
一、本研究之核心能力指標分為「發現問題擬定主題或議題能力」、「主動探究解決問題能力」、「合作溝通協調能力」、「管理評估應變能力」、「系統整理表達能力」與「職場專業學習能力」等6個構面,共計23個指標內涵以及99個指標細項。
二、專家認為本研究核心能力指標重要程度等級,在第一層指標構面中,「發現問題擬定主題或議題能力」為專家最重視的評估因素。在第二層指標內涵構面中,「具備蒐集與研究主題相關資料的能力」、「具有確認及釐清問題的能力」、「具有準確定義及呈現問題的能力」、「能具備主動學習態度,積極提出問題解決」、「具有探究與解決問題的能力」與「能與研究團隊共同瞭解整體研究內容及需求」分別為專家最重視的評估因素。
三、各指標構面中,專家認為權重值最高,而得獎學生認同度高且亦認為本身在專題製作過程當中是可以達成目標的指標,其IPA結果顯示重要性高且滿意度高時,分別為「具有確認及釐清問題的能力」、「具有探究與解決問題的能力」、「能與研究團隊共同瞭解整體研究內容與需求」、「能具有主動學習專業的能力」等,此為職場就業力為導向之技術型高中土木建築群學生專題實作之重要核心能力指標內涵。
Abstract
This study is aimed to construct and verify competence indicators toward employability into special project courses of Civil Engineering and Architecture Clusters in Technical High School. To address this, researcher developed dimensions, competence indicators and competence items for experts and revised these through three rounds of Delphi surveys. The Delphi’s data was analyzed with statistical methods of means, standard deviation, Kolmogorov-Smirnov one sample test, and Analytic hierarchy process (AHP). Then, the data was collected by questionnaires investigation, 268 samples were collected in students of 2015 academic year, the acquired data was analyzed the important performance (IPA). Last, the research data of experts and students was analyzed, verified and compared.
According to the analytical result, researcher was concluded that as follow:
1.The final version is composed of 6 dimensions (problem finding and topic organization competence; active inquiring and problem solving competence; cooperation communication and negotiation competence; management assessment competence; systematic analysis and expression competence; and professional learning competence in the workplace), 23 competence indicator indexes and 99 competence items.
2.There are 7 importance competence indicators from experts’ viewpoint, included problem finding and topic organization; problem identifying and clarifying; precise definition and problem presentation; data collection for related topics; active learning attitude and problem solving; inquiring and problem solving; and understanding the overall content need with the research team.
3.Synthesized the students’ and experts’ standpoint, there are 4 importance competence indicators was identified, included problem identifying and clarifying; inquiring and problem solving; understanding the overall content and needs with the research team; and active professional learning.
參考文獻
壹、中文部分
于文正(2014)。鷹架具體程度對創意發想的影響。科學教育研究期刊,59(2),31-60。new window
毛連塭、郭有遹、陳龍安、林幸台(2000)。創造力研究。台北︰心理出版社。
王如哲(2008)。評鑑大學績效的一項新指標-就業力。評鑑雙月刊電子報,15,20-23。
王美芬、熊召弟(2005)。國小階段自然與生活科技教材教法。台北市:心理出版社。
王貳瑞(1995)。實務專題製作與報告寫作。台北:華泰。
王翠妃、余忠潔、段曉林(2012)。探究教學對國中資優學生科學推理類型轉變之影響。特殊教育研究學刊,38(1),79-106。new window
行政院青輔會(2009)。青輔會大專畢業生就業力調查。台北:行政院青年輔導委員會。
吳明雄、許碧珊、饒達欽、簡明忠、陳建宏、張中一、黃秀玉 (2008)。高職學生技術創造力指標建構之研究。師大學報教育類(TSSCI),53(3),67-93。new window
呂碧浵(2012)。高級職業學校學生得獎作品指導教師之教學歷程分析研究:以餐飲科專題製作為例 (未出版之碩士論文)。國立雲林科技大學,雲林。
宋秋燕(2006)。員工對於組織發展就業能力之認知與離職傾向關係之研究─以台灣都會區之金控公司為例 (未出版之碩士論文)。南台科技大學,台南。
李大偉、張玉山(2000)。科技創造力的意涵與教學 (上)。生活科技教育,33 (9),9-16。
李美儀(2013)。高職商業群專題製作之實施-學生經驗課程之研究(未出版之碩士論文)。國立臺北科技大學,台北。
李清吟(1995)。臺北工專電機科專題製作課程之規劃與實施。技術學刊,10(3),299-307..
李榮彬(2008)。台灣小學校本課程的發展與實踐。「2008年21世紀小學校本課程改革國際學術研討會暨東北師大附小第四屆教育研究發表會」發表之論文,中國長春。
李賢哲(2001)。以動手做(DIY)工藝的興趣培養中小學童具科學創造力之人格特質。科學教育月刊,243,1-7。
沈安如(2005)。高職商業群「專題製作」課程內涵之規劃研究(未出版之碩士論文)。國立雲林科技大學,雲林。
沈健華、李順富、周春美、黃凱平(2002)。創造思考教學策略在技專院校企業管理系實務專題製作課程應用之研究。「彰雲嘉地區大專院校2002年研發成果聯合發表會」發表之論文,雲林。
林振雄(2001)。高職電機科學生基本能力之分析研究(未出版之碩士論文)。國立台北科技大學,台北。
林碩彥(2014)。以探究式學習導入高職化工群學生「專題製作」核心能力指標建構與驗證之研究(未出版之博士論文)。國立彰化師範大學,彰化。new window
金文森(2009)。兩岸就業市場趨勢下營建-建築-設計產業技術基本能力培育之研究--因應兩岸就業市場趨勢建構我國營建產業技術基本能力之研究。(行政院國家科學委員會專題研究成果報告,計畫編號:NSC 98-2511-S-324-001),未出版。
洪振方(1998)。在科學教學的另類選擇:融入科學史教學。屏師科學教育月刊,7,2-10。
洪榮昭、朱永裕、鄭廉鐙 (2002)。科技創作能力發展分析
為例。台灣教育,614,16-23。
紀怡如(2011)。校園環境議題融入高職設計群專題製作課程之教學行動研究(未出版之碩士論文)。國立彰化師範大學,彰化。
胡茹萍(2014)。美國《柏金斯法》探析。教育資料集刊,63,55-76。new window
胡衛平、俞國良(2002)。青少年的科學創造力研究。教育研究,23(1),44-48。
徐昊杲(2005)。高職實施「專題製作-問題解決之得勝課程」對學生問題解決態度及學習行為困擾之影響。行政院國家科學委員會專案報告(計畫編號: NSC93-2516-S-003-018)。
張吉成(2011)。電子商務企業期望之畢業生就業力—以科技大學為例。創新與管理,8(4),75-99。new window
張詩欣(2008)。國民小學校園閒置空間永續發展評估指標之研究(未出版之碩士論文)。國立政治大學,台北。
張靜儀(1995)。自然科探究教學法。屏師科學教育,1, 36-45。
教育部(2002)。創造力教育白皮書。台北:教育部。
教育部(2003)。科學教育白皮書。台北:教育部。
教育部(2013)。編制專題製作課程目標。台北:教育部。
教育部(2013)。人才教育白皮書。台北:教育部。
教育部(2014)。十二年國民基本教育課程綱要。台北:教育部。
教育部(2015)。十二年國民基本教育課程綱要技術型高級中等學校土木與建築群群科課程綱要(草案)。台北:教育部。
教育部技職司(2006)。高級職業學校「專題製作」科目課程實施說明書。台北:教育部。
教育部技職司(2010)。99年職業學校群科課程綱要。台北:教育部。
郭有遹(2001)。創造心理學。臺北:正中。
郭志文、宋俊虹(2007)。就業能力研究:回顧與展望。湖北大學學報(哲學社會科學版),34(6),86-91。
陳定邦(2003)。鷹架教學概念在成人學習歷程上應用之研究(未出版之博士論文)。國立台灣師範大學,台北。new window
陳姿靜(2008)。高中職觀光科教師對「專題製作」課程知覺之探討(未出版之碩士論文)。國立高雄應用科技大學,高雄。
陳琮斐(2006)。全民共通核心職能課程對職場就業力之影響-以學習動機為干擾(未出版之碩士論文)。嶺東科技大學,台中。
勞動力發展署(1997)。職業分類資訊查詢系統。取自 http://www3.evta.gov.tw/odict/index.asp
黃芳立(2009)。高職美容科「專題製作」課程施以創造思考教學之成效研究(未出版之碩士論文)。台南應用科技大學,台南。
黃金益(1998)。合作學習對大學生專題製作創造力影響之研究(未出版之碩士論文)。國立彰化師範大學,彰化。new window
黃茂在、陳文典(2004)。問題解決的能力。科學教育月刊,273,21-41。
楊建民(2009)。探究式教學法與講述式教學法在國小Scratch程式教學學習成效之研究(未出版之碩士論文)。國立屏東教育大學,屏東。
楊思偉(1999)。中日學校經營之比較研究。台北:師大書苑。
劉佩雲、簡馨瑩(譯) (2003)。Jones, B. F., Rasmussen, C., & Moffitt, M.著。問題解決的教與學。台北: 高等教育。
劉孟奇、邱俊榮、胡鈞立(2006)。在正式教育中提升就業力。台北:行政院青年輔導委員。
鄭明長(2002)。發問對教學歷程之影響初探。國立台北師範學院學報,15,87-114。new window
蕭佳純(2012)。國小學童科學學習動機、父母創意教養與科技創造力關聯之研究。教育科學研究期刊,57(4),103-133new window
蕭錫錡、趙志揚、許世卿、許錫銘、曾世虹、陳婉如(2001)。從專題製作課程論大學工程學生創意思考能力之培養。工業教育學刊,21,15-28。
糜萍萍(2007)。融入情境式教學模式對高職設計群專題製作課程學習成效之研究(未出版之碩士論文)。雲林科技大學,雲林。
簡禎富(2005)。決策分析與管理。台北:雙葉書廊。
蘇詠梅(2003)。走進專題研習中-理論與實踐。香港:教育出版社有限公司。
饒達欽、鄭增財 (1997)。談教師教學品質。技術及職業教育雙月刊,42,7-11。

貳、英文部分
Abd-El-Khalick, F., & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science:A critical review of the literature. International Journal of Science Education, 22(7), 665-701.
Abd-El-Khalick, F., Bell, R., & Lederman, N.G. (1998). The nature of science and instructional practice: Making the unnatural natural. Science Education, 82(4), 417-436.
Abd-El-Khalick, F., BouJaoude, S., Duschl, R. A., Hofstein, A., Lederman, N. G., Mamlok, R., Niaz, M., Treagust, D., & Tuan, H. (2004). Inquiry in science education: International perspectives. Science Education, 88(3), 397-419.
Alberta Learning. (2004). Focus on inquiry.From https://www.teachingbooks.net/content/FocusOnInquiry.pdf
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry? Journal of Science Teacher Education, 13(1), 1-12.
Barak, M., & Dori, Y. J. (2005). Enhancing undergraduate students’ chemistry understanding through project-based learning in an IT environment. Science Education, 89(1), 117–39.
Barak, M., & Goffer, N. (2002). Fostering systematic innovative thinking and problem solving: Lessons education can learn from industry. International Journal of Technology and Design Education, 12(3), 227–247.
Bell, R., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30–34.
Belland, B. R., Kim, C. M., & Hannafin, M.J. (2013). A framework for designing scaffolds that improve motivation and cognition. Educational Psychologist, 48(2), 243-270.
Bransford, J., & Barry, S. (1984). The ideal problem solver: A guide for improving thinking, learning, and creativity. New York: W.H. Freeman.
Brown, A. L., & Campione, J. C. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating congnitive theory and classroom practice (pp.229-270) Cambridge, MA: MIT Press/Bradford Books.
Bruner, J., Wood, D., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
Bybee, R. W. (2004). Science inquiry and science teaching. The Netherlands: Kluwer.
Campbell, T., Abd-Hamid, N. H., & Chapman, H. (2010). Development of instruments to assess teacher and student perceptions of inquiry experiences in science classrooms. Journal of Science Teacher Education, 21, 13-31.
Chang, I. F. (1998). Teaching technological creativity-why and how. Paper presented at International Conference on Technological Creativity Development, Taipei, Taiwan. Clearing House, 74, 39-41.
Crawford, B. A. (2000). Embracing the essence of inquiry New roles of science teacher. Journal of Research in Science Teaching, 37(9), 916-937.
Csikszentmihalyi, M. (1996). Social, culture, & person: A system view of creativity. In R. J. Sternberg (Ed.), The Nature of Creativity(pp.325-39). NY: Cambridge University Press.
Dai, D. Y., Gerbino, K. A., & Daley, M. J. (2011). Inquiry-based learning in China: Do teachers practice what they preach, and why? Frontiers of Education in China, 6(1), 139–157.
Dasgupta, S. (1996). Technology and creativity. New York: Oxford University Press.
Davis, E. A. (2003). Prompting middle school science students for productive reflection: Generic and directed prompts. The Journal of the Learning Sciences, 12, 91-142.
Davis, E. A., & Miyake, N. (2004). Explorations of scaffolding in complex classroom systems. Journal of the Learning Sciences, 13(3), 265–272.
Drayton, B., & Falk, J. K. (2001). Tell-tale signs of the inquiry oriented classroom. NASSP Bulletin, 85, 24-34.
Edelson, D. C. (2001). Learning-for-use: A Framework for the design of technology-supported inquiry activities. Journal of Research in Science Teaching, 30(3), 355-385.
Edelson, D. C., Gordin, D. N., & Pea, R. D. (1999). Addressing the challenges of inquiry-based learning through technology and curriculum design. Journal of the Learning Sciences, 8, 391-450.
Esquivel, G. B. (1995). Teacher behaviors that foster creativity, Educational Psychology Review, 7(2), 185-202.
Feldhusen, J. F., & Treffinger, D. J. (1980). Creative thinking and problem solving in gifted education. Tx: Kendall/Hunt.
Fernández-Oliveras, A., Fernández, P., & Oliveras, M. L. (2014). Professional Skills Related to Creativity and Critical Capacity in Optics and Optometry: Assaying a Teaching Approach for Undergraduate Training. Procedia - Social and Behavioral Sciences, 152, 862-867.
FINN, D. (2003) The ‘employment-first’ welfare state: lessons from the New Deal for Young People. Social Policy and Administration, 37, 709–724.
Fischer, S., Oget, D., & Cavallucci, D. (2016). The evaluation of creativity from the perspective of subject matter and training in higher education: Issues, constraints and limitations. Thinking Skills and Creativity, 19, 123-135.
Fried-Booth, D. L. (1987). Project work. Oxford: Oxford University Press.
Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693-705.
Guilford, J. P. (1986). Creative talents: Their nature, uses and development. Bearly limited.
Guzman, A. B. D., & Choi, K. O. (2013). The relations of employability skills to career adaptability among technical school students. Journal of Vocational Behavior, 82(3), 199-207.
Hähkiöniemi, M. (2013). Teacher's reflections on experimenting with technology-enriched inquiry-based mathematics teaching with a preplanned teaching unit. The Journal of Mathematical Behavior, 32(3), 295-308.
Harvey, L., Locke, W., & Morey, A. (2002). Enhancing employability, recognising diversity: Making links between higher education and the world of work. Universities UK.
Hill, C. W. L., & Rothaermel, F. T. (2003). The performance of incumbent firms in the face of radical technological innovation. Academy of Management Review, 28(2), 257-74.
Houston, D. (2005). Employability, skills mismatch and spatial mismatch in metropolitan labour markets. Urban Studies, 42(2), 221-243.
Howe, R. (1997). Creative problem solving approaches processes for teaching and doing creative activity. Paper presented at the seminar of Instruction for Creative Thinking. Taipei: NTNU.
Ismail, S., & Mohammed, D. S. (2015). Employability Skills in TVET Curriculum in Nigeria Federal Universities of Technology. Procedia - Social and Behavioral Sciences, 204, 73-80.
Keys, C. W., & Bryan, L. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38, 631–646.
Khan, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877-905.
Krajcik, J. S., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350.
Krajcik, J. S., Czerniak, C., & Berger, C. (2003). Teaching children science in elementary and middle school classrooms: A project-based approach. New York: McGraw-Hill.
Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., & Fredricks, J. (1998). Inquiry in Project-Based Science Classrooms: Initial Attempts by Middle School Students. The Journal of the Learning Sciences, 7(3&4), 313-350.
Li, Y., Zhao, Y., & Liu, Y. (2006). The relationship between HRM, technology innovation and performance in China. International Journal of Manpower, 27(7), 679-697.
Lindfors, J. W. (1999). Children's inquiry: using language to make sense of the world. New York: Teachers College Press.
Loving, C. C. (1997). From the summit of truth to its slippery slopes: Science education’s journey through positivist-postmodern territory. American Educational Research Journal, 34(3), 421-452.
Lunetta, V. N. (1998). The school science laboratory: Historical perspectives and contexts for contemporary teaching. In Tobin, D. & Fraser, B.J. (Eds.), International handbook of science education (pp.249-264). The Netherlands: Kluwer.
Mack, T., & Landau, C. (2015). Winners, losers, and deniers: Self-selection in crowd innovation contests and the roles of motivation, creativity, and skills. Journal of Engineering and Technology Management, 37, 52-64.
Martilla, J. A., & James, J. C. (1977). Importance performance analysis. Journal of Marketing, 41(1), 77–79.
Martin-Hansen, L. (2002). Defining inquiry: Exploring the many types of inquiry in the science classroom. The Science Teacher, 69(2),34-37
Mayer, R. E. (1992). Thinking, problem solving, cognition. New York: W. H. Freeman and Company.
Mayston, D.J., & Jesson, D. J. (1991). Educational performance assessment: A new framework of analysis. Policy and Politics, 19, 99-108.
Minner, D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction-what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496.
National Research Council. (1996). National Science Education Standards. Washington DC: National Academy Press.
National Research Council. (2000). Inquiry and National science education standards .Washington DC: National Academy Press.
National Research Council. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
Niu, W. (2007). Individual and environmental influences on Chinese student creativity. Journal of Creative Behavior, 41(3), 151-175.
O’ Sullivan, D. (1991). DSM high-performance fiber attracts growing interest. Chemical & Engineering News, 69, 20-23.
Pandilla, M. J., & Padilla, R. K. (1986). Thinking in Science-The science process skills. (ERIC document Reproduction Service. No, ED277549).
Quintana, C., Reiser, B. J., Davis, E. A., Krajcik, J. S., Fretz, E., Duncan, R. G., et al. (2004). A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13(3), 337–386.
Ramnarain, U. D. (2014). Teachers’ perceptions of inquiry-based learning in urban, suburban, township and rural high schools: The context-specificity of science curriculum implementation in South Africa. Teaching and Teacher Education, 38, 65-75.
Randy, L., Bell, L. S., & Ian, B. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.
Rezba, R. J., Auldridge, T., & Rhea, L. (1999). Teaching and learning the basic science skills. Retrieved from www.pen.k12.va.us/vdoe/instruction/TLBSSGuide.doc.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive
Rogoff, B. (1994). Developing understanding of the idea of communities of learners. Mind, Culture, and Activity, 4, 209-229.
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48, 9-26.
Sampson, S. E., & Showalter, M. J. (1999). The performance-importance response function: Observations and implications. The Service Industries Journal, 19, 1-25.
Saterfiel, T. H., & McLarty, J. R. (1995), Assessing employability skills. (ERIC Reproduction Service No.ED391109.)
Schauble, L. (1996). The development of scientific reasoning in knowledge-rich contexts. Developmental Psychology, 32(1), 102-119.
Shallcross, D. J. (1981). Teaching creative behavior: How to teach creativity to children of all ages. New Jersey: Prentice-Hall.
Smith, P. L., & Ragan, T. J., (1999). Instructional Design.(2nd edition), Norman, OK: The University of Oklahoma.
Sternberg, R. J., & Lubart, T. I. (1999). The concept of creativity: Prospects and paradigms. In Sternberg, R. J. (Ed.), Handbook of Creativity (pp. 3-15). New York: Cambridge University Press.
Studente, S., Seppala, N., & Sadowska, N. (2016). Facilitating creative thinking in the classroom: Investigating the effects of plants and the colour green on visual and verbal creativity. Thinking Skills and Creativity, 19, 1-8.
Thang, S. M. (2004). Student approaches to studying:Identify the Malaysian constructs and comparing them with those in other contexts. Journal of Further and Higher Education, 28(4), 395-371.
The Secretary's Commission on Achieving Necessary Skills (1991). What work requires of schools: A SCANS report for America 2000. Washington, D. C.: U. S.Department of Labor.
Torrance, E. P., & Goff, K. (1990). Fostering academic creativity in gifted students. ERIC Flyer File on Gifted Students (No. E484). University Press
Vlassi, M., & Karaliota, A. (2013). The Comparison between Guided Inquiry and Traditional Teaching Method. A Case Study for the Teaching of the Structure of Matter to 8th Grade Greek Students. Procedia - Social and Behavioral Sciences, 93, 494-497.
Vygotsky, L. S. (1978). Mind in Society. Cambridge, MA: Harvard University Press.
Wang, J., & Jou, M. (2016). Qualitative investigation on the views of inquiry teaching based upon the cloud learning environment of high school physics teachers from Beijing, Taipei, and Chicago. Computers in Human Behavior, 60, 212-222.
White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: Making science accessible to all students. Cognition and Instruction, 16, 3-118.
Wong, S. L., & Hodson, D. (2008). From the horse’s mouth: What scientists say about scientific investigation and scientific knowledge. Science Education, 93, 1–22.
Xue-song, L., Qi-hui, L., & Jie, C. (2012). Inquiry Learning’ Implementation and Evaluation in the Teaching of Information Technology. Physics Procedia, 24, Part C, 1851-1856.
Zhou, C., Chen, H., & Luo, L. (2014). Students’ perceptions of creativity in learning Information Technology (IT) in project groups. Computers in Human Behavior, 41, 454-463.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE