:::

詳目顯示

回上一頁
題名:以不同的專家知識結構為基礎發展學習進程及模式評估~以國三「直線運動」單元為例
作者:陳秀溶
作者(外文):Chen, Hsiu-Jung
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:王國華
蔡顯麞
學位類別:博士
出版日期:2018
主題關鍵詞:學習進程直線運動教科書順序理論Q矩陣learning progressionslinear motiontextbookOrdering theoryQ- matrix
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:3
本研究旨在發展以專家知識結構為基礎之學習進程模式及其評估。模式分成提出假設性學習進程與發展有效試題,收集、分析學生的概念發展順序兩大步驟。研究過程分成三部分,首先利用內容分析法了解市占率最高之三個版本教科書內容「直線運動」概念排序、運用調查法得知專家教師的「直線運動」教材知識架構,並參考相關文獻找出「直線運動」概念的排序情形,綜合上述資料提出假設性學習進程模型。其次以Q矩陣發展7題有效試題,正式施測學生樣本數總共1913人,並依據順序理論分析學生的試題反應,檢驗所提出的假設性學習進程模型,找出最吻合的模型。第三部分將最吻合之學習進程模型與課綱和三個教科書版本概念編排順序做對應,檢驗其一致性。研究結果發現利用內容分析、問卷調查與文獻分析總共歸納出29個「直線運動」假設性學習進程,再經有效試題施測及順序理論分析,發現模型12-1最符合學生的概念發展順序。最後,將所得學習進程對應課綱與三個教科書版本對應,發現課綱中僅描述「直線運動」的距離、時間和方向的大概念並無提出教學的概念順序,另外三個版本教科書中僅有一個版本之概念編排呈現順序與本研究的學生學習進程相符。基於以上研究結果,本研究針對「直線運動」在教科書的編排、教學、認知診斷及學習進程的發展模式提出建議。
The main purpose of this study is to evaluate a model of developing learning progressions based on experts’ knowledge structures and to evaluate its feasibility. The model is divided into two steps: proposing hypothetical learning progressions and developing effective item tools to test the students' concept development order. This study is divided into three parts. In the first part, we utilized “content analysis” to analyze the knowledge of the “linear motion” concepts, such as distance, speed, velocity, acceleration, interpretation x-t graph and v- t graph ability in the three versions of junior high school Science and Technology textbooks. In addition, we utilized “survey” to explore experts’ concept structures of the “linear motion” concepts, and referred to the relevant literature to find out the classification of the concepts. Based on the above information, we proposed hypothetical learning progressions. In the second part, we used Q-matrix theory to produce the effective item tools. A total of 1913 students were examined, and then we used Ordering theory analysis of students' reaction to test the proposed hypothetical learning progressions to find the most consistent learning progression. In the third part, we compared the most consistent learning progression to the curriculum guidelines and the three versions of textbooks. Based on the results, we proposed 29 hypothetical learning progressions of "linear motion" . After the effective item tools test and Ordering theory analysis, it is found that the model 12-1 is the most suitable for student's concept development sequence.Finally, we compared the most consistent learning progression to the curriculum guidelines and the three versions of textbooks. we found that the concepts of the distance, time and direction of the "linear motion" in the curriculum guidelines did not provide the conceptual order for instructing. Among the three versions of textbooks, only one textbook has a high concordance in the concepts of students’ development levels. Based on the above findings, this study provides suggestions for the "linear motion" in the textbook layout, teaching, cognitive diagnosis and learning progression development models.
一、中文部分
丁雪茵、鄭伯壎、任金剛(1996)。質性研究中研究者的角色與主觀性。本土心理學研究,6,354-376。
王幸雯(2000)。兒童速度概念發展之研究(未出版之碩士論文)。臺灣師範大學物理學系,臺北市。
王佳琪(2015)。科學想像力學習進程之驗證(未出版之博士論文)。國立中山大學教育研究所,高雄市。
王昭富(2002)。位移組合與相對運動概念發展的關係(未出版之碩士論文)。臺灣師範大學物理學系,臺北市。
王學武、李家瑩(2013)。國小力與運動悅趣化數位教材開發之研究。國民教育,54(2),70-77。
王文中、呂金燮、吳毓瑩、張郁雯、張淑慧(2004)。測驗與評量—教室學習觀點。臺北市:五南。
方碧琦(2013)。學習環教學模式對九年級學生「力與運動」單元之概念學習的影響(未出版之碩士論文)。國立臺灣海洋大學,基隆市。
全中平(2002)。國民小學學童在力學概念學習之研究-運動與力、力矩及能量(II)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC 90-2511-S-152-016),未出版。
江文慈(2007)。超越測量-評量典範轉移的探索與啟示。教育實踐與研究,20(1),173-200。
李如斌(2003)。國中學生「速度概念」之學習狀況分析(未出版之碩士論文)。高雄師範大學物理系,高雄市。
李佳蓁(2011)。混合題型之多點計分知識結構分析與適性測驗選題策略(未出版之碩士論文)。國立臺中教育大學,臺中市。
李淑芳(2008)。國中數學科學習路徑分析之研究─以因數與倍數為例(未出版之碩士論文)。淡江大學,新北市。
余民寧(1991)。試題反應理論的介紹(一)--測驗理論的發展趨勢。研習資訊,8(6),13-17。
余民寧(1992)。試題反應理論的介紹(二)--基本概念和假設。研習資訊,9(1),5-9。
余民寧(2003)。線上認知診斷評量模式之研究:以國小數學科低成就學生為對象。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-90-2614-S-004-011),未出版。
余民寧(2009)。試題反應理論(IRT)及其應用。臺北市:心理。
吳世能(2008)。多點記分無參數試題反應理論與順序理論整合模式程式設計與應用(未出版之碩士論文)。亞洲大學,臺中市。
吳世能(2013)。應用Q矩陣理論確定試題順序理論最適順序係數閾值-以分數乘法為例(未出版之博士論文)。亞洲大學,臺中市。
吳世偉(2013)。運用規則空間模型進行地理科學習路徑認知診斷分析(未出版之碩士論文)。中華大學,新竹市。
吳貞誼(2012)。學生對一維運動之文字與x-t圖表徵的理解分析研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
吳殷宏(2002)。中小學生等速度運動概念學習研究-時間與空間交互作用之自我協調法(未出版之碩士論文)。國立臺灣師範大學,臺北市。
吳聖煒(2007)。1~6年級數學學習路徑與學習內容之分析研究(未出版碩士論文)。淡江大學,新北市。
吳慧珉、郭伯臣(2011)。認知診斷模式之測驗編製及適性測驗選題策略之探討。行政院國家科學委員會專題研究計畫成果報告(編號:NSC100-2410-H-656-007),未出版。
汪端正(2008)。適性診斷測驗與數位個別指導教材之研發-以國小六年級質數與合數單元為例(未出版之碩士論文)。國立臺中教育大學,臺中市。
何秀芳(2009)。國小五年級「線對稱圖形」單元教材與電腦化適性診斷測驗(未出版之碩士論文)。國立臺中教育大學,臺中市。
周珮儀(2012)。十二年國教與教科書。教科書研究,5(2)。126-129。
周惠民、林陳涌、任宗浩、李哲迪(2007)。科學教學與學習評量標準芻議。科學教育月刊,298,2-18。
林生傳(2003)。教育研究法。臺北市:心理。
林杰炘(2005)。以能力指標結構為基礎的電腦適性測驗編製及動畫補救教學之應用─ 以國小數學領域五年級能力指標幾何為例(未出版之碩士論文)。國立臺中教育大學,臺中市。
林原宏(2005)。次序理論,教育研究月刊,134,142-143。
林哲民(2013)。國小學生因數與倍數學習進程之探究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
林楷植(2002)。發展二段式紙筆測驗探討國中學生[力與運動]之迷思概念(未出版之碩士論文)。國立彰化師範大學,彰化縣。
林範英(2002)。瞬時速度概念的自我協調學習研究(未出版之碩士論文)。臺灣師範大學物理學系,臺北市。
林立敏、白曉珊、郭伯臣、劉育隆(2007)。數位個別指導教材研發與適性補救教學模式之研究-以國小五年級數學 “因數與倍數” 單元為例。網際網路技術學刊,8(2),191-197。
卓淑瑜(2011)。不同認知診斷適性測驗演算法結合知識結構之成效比較(未出版之碩士論文)。國立臺中教育大學,臺中市。
施家興(2012)。以多重表徵融入TEAM教學策略對力與運動單元概念學習影響之研究(未出版之碩士論文)。國立彰化師範大學,彰化縣。
柯翠菱(2014)。以評量回饋教學融入國二學生科學探究能力學習進程之研究(未出版之碩士論文)。國立屏東教育大學,屏東縣。
涂金堂(2000)。徑路搜尋法在知識結構測量上的應用。初等教育學報,13,275-306。
涂金堂(2003)。認知診斷評量的探究。臺南師範學院學報,37(2),67-97。
教育部(2003)。科學教育白皮書。臺北市:教育部。
教育部(2005)。國民小學及國民中學學生成績評量準則。臺北市:教育部。
教育部(2008)。97年國民中小學九年一貫課程綱要。臺北市:教育部。
陳虹真(2006)學習路徑、學習風格與數位學習績效之研究—以國中數學科為例(未出版之碩士論文)。雲林科技大學,雲林縣。
陳淑筠(2002)。國內學生自然科學迷思概念研究之後設研究(未出版之碩士論文)。國立臺東師範學院,臺東縣。
陳均伊、王懋勳、施昆易(2013)。探究導向教學活動於國小「力與運動」單元的應用。科學教育,359,32-41。
許雅菱(2005)。貝氏網路在教育測驗分析上的應用(未出版之碩士論文)。國立臺中教育大學,臺中市。
許曜瀚(2008)。基於學生概念結構之適性測驗演算法(未出版之碩士論文)。國立臺中教育大學,臺中市。
許天維、劉湘川、施淑娟、施慶麟(2000)。國小數學科學習進展指標題庫建立之編製報告。測驗統計年刊,8,37-96。
莊維仁(2014)。運用規則空間模型進行學習路徑認知診斷分析-以某國中七年級英語科克漏字選擇與填空題型為例(未出版之碩士論文)。中華大學,新竹市。
郭伯臣(2003)。國小數學科電腦化適性診斷測驗(I)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-91-2520-S-142-001),未出版。
郭伯臣(2004)。國小數學科電腦化適性診斷測驗(II)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-92-2521-S-142-003),未出版。
郭伯臣(2005)。國小數學科電腦化適性診斷測驗(III)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC-93-2521-S-142-004),未出版。
郭伯臣、謝友振、張峻豪、蔡坤穎(2005)。以結構理論為基礎之適性測驗與適性補救教學線上系統。臺灣數位學習發展研討會發表之論文,國立臺灣師範大學。
張川木(2000)。國中學生力學概念發展研究。行政院國家科學委員會專題研究計畫成果報告(編號:NSC 88-2511-S-110-002),未出版。
張川木(2003)。利用實務活動教導學生力與運動之概念(3/3)。行政院國家科學委員會專題研究計畫成果報告(編號:NSC 91-2511-S-110-008),未出版。
張育奇(2006)。多元評量模式對國小學童自然科認知能力之區辨性及預測性之研究-以「力與運動」為例(未出版之碩士論文)。國立嘉義大學,嘉義縣。
張芬芬(2007)。後現代質性研究:特徵及其對課程研究的蘊義。課程與教學,10(3),31-48。
張芬芬(2010)。質性資料分析的五步驟:在抽象階梯上爬升。初等教育學刊,35,87-120。
張郁雯(2012)。學習進展:形成性評量與總結性評量之整合架構。教育人力與專業發展,29(4),15-26。
張寧(2007)。從複雜到結構:詮釋結構模式法之應用。公共事務評論,8(1),1-28。
黃元宏(2016)。建立中學生絕對值與絕對值方程式學習進程之研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
黃政傑(1991)。課程設計。臺北:東華書局。
黃美盼(2005)。整數加減法文字題知識結構與認知型式關係之研究—以國小二年級學童為例。(未出版碩士論文)。國立臺中教育大學,臺中市。
黃碧雲(2005)。以能力指標結構為基礎的電腦適性測驗編製及動畫補救教學之應用—以國小數學領域四年級能力指標代數、統計與機率為例(未出版之碩士論文)。國立臺中教育大學,臺中市。
黃湃翔、高慧蓮、陳淑敏、黃楸萍(2014)。科學教育新熱點─科學探究學習進程。現代桃花源學刊,4,96-117。
彭惠玲(2014)。運用規則空間模型進行國中英語科「單字、文法、句型」之學
習路徑認知診斷分析(未出版之碩士論文)。中華大學,新竹市。
彭泰源、張惠博(2000)國小五年級學童「力與運動」概念學習之研究。 科學教育,10,231-262。
楊明獻(2014)。趣味力學實驗。科學教育月刊,373,21-35。
楊雅琳(2007)。國小高年級學童自然與生活科技領域實作評量之研究-以「力與運動」單元為例(未出版之碩士論文)。國立嘉義大學,嘉義市。
楊銀興(1999)。傳統評量與新式評量之比較及國小教師對實施新式評量相關問題覺知情形之研究(未出版之博士論文)。國立臺灣師範大學,臺北市。
楊其安、郭重吉(1990)。利用臨床唔談探究國中學生對力學概念的另有架構。科學教育,1,37-59。
楊智為、卓淑瑜、郭伯臣、陳亭宇(2011)。DINA與G-DINA模式參數不變性探討。測驗統計年刊,19(1),1-16。
董正玲、郭重吉(1992)。利用晤談方式探究國小兒童運動與力概念的另有架構。科學教育,3,93-124。
廖千惠(2003)。學習路徑控制機制對學生學習影響之研究-以國小數學課程為例(未出版之碩士論文)。雲林科技大學,雲林縣。
劉坤夏(2012)。科學槪念學習進程的發展,評量與敎學:以氧化還原為例(未出版之博士論文)。國立中山大學,高雄市。
劉育隆(2007)。題組式適性診斷測驗系統之建置(未出版碩士論文)。國立臺中教育大學,臺中市。
劉育隆(2012)。智慧型雲端診斷測驗與適性學習路徑模式之研究-以微分算則為例(未出版之博士論文)。亞洲大學,臺中市。
劉湘川、李文忠(1995)。無參數試題反應理論之等化模式應用在垂直等化之效益研究。測驗統計年刊,3,42-56。
劉湘川(2003))。混合型語義結構分析之研究。測驗統計年刊,11,1-16。
鄭百成(2016)。理想選擇試題之建置及其多元計分順序結構法之研究-以函數和之微分為例(未出版之博士論文)。國立臺中教育大學,臺中市。
鄭茹芬(2002)。國中學生在力學課程後對力與運動概念認知之現況調查研究(未出版之碩士論文)。臺灣師範大學,臺北市。
鄭富森(1994)。一個 CTT 和 IRT 之整合模式。初等教育學刊,3,101-138。
鄭憲聰(2011)。融入論證導向的教學策略對國三學生力與運動單元學習成效影響之研究(未出版之碩士論文)。國立彰化師範大學,彰化縣。
鄭麗玉(2000)。認知與教學。臺北市:五南。
蔡昆諭(2005)。國中學生力與運動的迷思概念(未出版之碩士論文)。臺灣師範大學,臺北市。
蔡敏玲(2001)。教育質性研究報告的書寫: 我在紀實與虛構之間的認真與想像。
國立臺北師範學院學報,14,233-260。
潘璦琬、許瑋玲(2008)。羅序模式檢定貝氏憂鬱量表第二版之建構效度。臺灣醫學,12(3),284-291。
謝錦泉(2007)。以貝氏網路建構適性化學習環境(未出版之碩士論文)。國立高雄應用科技大學,高雄市。
顓孫蕭芳(2014)。思考導向的探究式學習對國小四年級學童的科學探究能力之學習進程之影響(未出版碩士論文)。國立屏東教育大學,屏東縣。
簡于智(2008)。以p-prim探究學生學習 [力與運動] 的學習路徑(未出版之碩士論文)。臺灣師範大學,臺北市。
簡明煜(2002)。中小學生時間、空間、運動概念發展之相關性研究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
羅慶璋、張欣怡、洪振方(2014)。國民中學自然科個案教師網路探究教學的學習進程,數位學習科技期刊,6(3),65-89。
蘇進棻(2006)。九年一貫「一綱多本」教科書政策衍生問題與因應策略。教育研究與發展期刊,2(3),63-91。
二、英文部分
Airasian, P. W., & Bart, W. M. (1973). Ordering theory: A new and useful measurement model. Educational Technology, 13(5), 56-60.
Alonzo, A. C. (2010). Discourse as a lens for reframing consideration of learning progressions. In K. Gomez, L. Lyons, & J. Radinsky (Eds.), Learning in the disciplines: Proceedings of the 9th international conference of the learning sciences (ICLS 2010)—Volume 1(pp. 588-595). Chicago, IL: International Society of the Learning Sciences.
Alonzo, A. C., & Steedle, J. T. (2009). Developing and assessing a force and motion learning progression. Science Education, 93(3), 389-421.
American Association for the Advancement of Science. (1993). Benchmarks for science literacy. New York, NY: Oxford University Press.
American Association for the Advancement of Science. (2009). Benchmarks for Science Literacy. Retrieved from http://www.project2061.org/publications/bsl/online/index.php?
American Association for the Advancement of Science. (2001a). Atlas of Science Literacy: Mapping K-12 learning goals. Washington DC: Author.
American Association for the Advancement of Science & National Science Teachers Association. (2001b). Atlas of science literacy-Volumes 1. Washington DC: Author.
American Association for the Advancement of Science & National Science Teachers Association. (2007). Atlas of science literacy-Volumes 2. Washington DC: Author.
Amin, T. G., Smith, C. L., & Wiser, M. (2014). Student conceptions and conceptual change: Three overlapping phases of research. In N. Lederman & S. Abell (Eds.), Handbook of Research in Science Education (pp. 57-77). New York, NY: Routledge.
Arieli‐Attali, M., & Cayton‐Hodges, G. (2014). Expanding the cbal™ mathematics assessments to elementary grades: The development of a competency model and a rational number learning progression. ETS Research Report Series, 2014(1), 1-41.
Attri, R., Dev, N., & Sharma, V. (2013). Interpretive structural modelling (ISM) approach: an overview. Research Journal of Management Sciences, 2(2), 3-8.
Bailey, A. L., & Heritage, M. (2014). The role of language learning progressions in improved instruction and assessment of English language learners. TESOL Quarterly, 48(3), 480-506.
Battista, M. T. (2011). Conceptualizations and issues related to learning progressions, learning trajectories, and levels of sophistication. The Mathematics Enthusiast, 8(3), 507-570.
Berland, L. K., & McNeill, K. L. (2010). A learning progression for scientific argumentation: Understanding student work and designing supportive instructional contexts. Science Education, 94(5), 765-793.
Birenbaum, M. (1996). Assessment 2000: Towards a pluralistic approach to assessment. In M. Birenbaum, & F. J. R. C. Dochy (Eds.), Alternatives in assessment of achievements, learning processes and prior knowledge (pp. 3-29). Boston, MA: Kluwer Academic.
Black, P., Wilson, M., & Yao, S. Y. (2011). Road maps for learning: A guide to the navigation of learning progressions. Measurement: Interdisciplinary Research & Perspective, 9(2-3), 71-123.
Briggs, D.C., & Alonzo, A.C. (2009, June). The psychometric modelling of ordered multiple-choice item responses for diagnostic assessment with a learning progression. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
Cañal, P. (1999). Photosynthesis and ‘inverse respiration’ in plants: An inevitable misconception? International Journal of Science Education, 21(4), 363-371.
Carraher, D., Smith, C., Wiser, M., Schliemann, A., & Cayton-Hodges, G. (2009, June). Assessing students’ evolving understandings about matter. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
Chen, J., & Anderson, C. W. (2015). Comparing American and Chinese students' learning progression on carbon cycling in socio-ecological systems. Science Education International, 26(4), 439-462.
Chen, F., Yan, Y., & Xin, T. (2017). Developing a learning progression for number sense based on the rule space model in China. Educational Psychology, 37(2), 128-144.
Chevalaz, G. M. & Tatsuoka, K. K. (1983). A comparative analysis of two order analytic techniques: Assessing item hierarchies in real and simulated data. (Rep. No. CERL-CATM-RR-83-2-NTE). Retrieved from https://files.eric.ed.gov/fulltext/ED236165.pdf
Corcoran, T. B., Mosher, F. A., & Rogat, A. (2009). Learning progressions in science: An evidence-based approach to reform. Retrieved from http://repository.upenn.edu/cpre_researchreports/53
Crocker, L., & Algina, J. (1986). Introduction to classical and modern test theory. New York, NY: Holt, Rinehart, and Winston.
Cross, R. T., & Mehegan, J. (1988). Young children's conception of speed: Possible implications for pedestrian safety. International Journal of Science Education, 10(3), 253-265.
Cross, R. T., & Pitekethly, A. (1988). Speed, education and children as pedestrians: A cognitive change approach to a potentially dangerous naive concept. International Journal of Science Education, 10(5), 531-540.
De La Torre, J. (2008). An empirically-based method of Q-matrix validation for the DINA model: Development and applications. Journal of Educational Measurement, 45(4), 343-362.
Driver, R., Leach, J., Scott, P., & Wood-Robinson, C. (1994). Young people’s understanding of science concepts: Implications of cross-age studies for curriculum planning. Studies in Science Education, 24, 75-100.
Duncan, R. G., Castro-Faix, M., & Choi, J. (2016). Informing a learning progression in genetics: Which should be taught first, mendelian inheritance or the central dogma of molecular biology? International Journal of Science and Mathematics Education, 14(3), 445-472.
Duncan, R. G., Rogat, A. D., & Yarden, A. (2007). Learning progressions in genetics. Retrieved from http://www.project2061.org/publications/2061connections/2007/
media/KSIdocs/golanduncan_rogat_yarden_paper.pdf
Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students' understandings of modern genetics across the 5th–10th grades. Journal of Research in Science Teaching, 46(6), 655-674.
Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123-182.
Fulmer, G. W. (2015). Validating proposed learning progressions on force and motion using the force concept inventory: Findings from Singapore secondary schools. International Journal of Science and Mathematics Education, 13(6), 1235-1254.
Fulmer, G. W., Liang, L. L., & Liu, X. (2014). Applying a force and motion learning progression over an extended time span using the Force Concept Inventory. International Journal of Science Education, 36(17), 2918-2936.
Furtak, E. M. (2009, June). Toward learning progressions as teacher development tools. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
Furtak, E., Morrison, D., & Kroog, H. (2014). Investigating the link between learning progressions and classroom assessment. Science Education, 98(4), 640-673.
Gagné, R.M. (1977). The Conditions of Learning. Third edition. New York, NY: Holt, Rinehart & Winston.
Gipps, C. V. (1994). Beyond testing: Towards a theory of educational assessment. London, England: The Falmer Press.
Gunckel, K. L., Covitt, B. A., & Anderson, C. W. (2009, June). Learning a secondary Discourse: Shifts from force-dynamic to model-based reasoning in understanding water in socioecological systems. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
Gunckel, K. L., Covitt, B. A., Salinas, I., & Anderson, C. W. (2012). A learning progression for water in socio‐ecological systems. Journal of Research in Science Teaching, 49(7), 843-868.
Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043-1055.
Hammer, D., & Sikorski, T. R. (2015). Implications of complexity for research on learning progressions. Science Education, 99(3), 424-431.
Herrmann-Abell, C. F., & DeBoer, G. E. (2016, April). Using rasch modeling to investigate a learning progression for energy ideas. Paper presented at the 2016 NARST Annual International Conference, Baltimore, MD.
Hess, K. (2008). Developing and using learning progressions as a schema for measuring progress. Paper presented at 2008 CCSSO Student Assessment Conference, Orlando, FL. Retrieved from http://www.nciea.org/publications/CCSSO2_KH08.pdf
Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. The physics teacher, 30(3), 141-158.
Hokayem, H., Ma, J., & Jin, H. (2015). A learning progression for feedback loop reasoning at lower elementary level. Journal of Biological Education, 49(3), 246-260.
Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio‐ecological systems. Journal of Research in Science Teaching, 49(9), 1149-1180.
Jin, H., Shin, H., Johnson, M. E., Kim, J., & Anderson, C. W. (2015). Developing learning progression‐based teacher knowledge measures. Journal of Research in Science Teaching, 52(9), 1269-1295.
Jin, H., Zhan, L., & Anderson, C. W. (2013). Developing a fine-grained learning progression framework for carbon-transforming processes. International Journal of Science Education, 35(10), 1663-1697.
Johnson, P. (2013). A learning progression towards understanding chemical change. Educación Química, 24(4), 365-372.
Jones, A. T. (1983). Investigation of students' understanding of speed, velocity and acceleration. Research in Science Education, 13(1), 95-104.
Katz, I. R., Martinez, M. E., Sheehan, K. M., & Tatsuoka, K. K. (1998). Extending the rule space methodology to a semantically-rich domain: Diagnostic assessment in architecture. Journal of Educational and Behavioral Statistics, 23(3), 254-278.
Knippels, M. C. P., Waarlo, A. J., & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 108-112.
Krajcik, J. (2011). Learning progressions provide road maps for the development and
validity of assessments and curriculum materials. Measurement: Interdisciplinary research & perspective, 9, 155-158.
Lee, H. S., & Liu, O. L. (2010). Assessing learning progression of energy concepts across middle school grades: The knowledge integration perspective. Science Education, 94(4), 665-688.
Lehrer, R., & Schauble, L. (2015). Learning progressions: The whole world is NOT a stage. Science Education, 99(3), 432-437.
Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The Attribute Hierarchy Method for Cognitive Assessment: A Variation on Tatsuoka's Rule‐Space Approach. Journal of Educational Measurement, 41(3), 205-237.
Liu, X. (2013). Difficulties of items related to energy and matter: Implications for learning progression in high school chemistry. Educación Química, 24(4), 416-422.
Liu, H. C., Chen, W. S., & Tsai, H. C. (2012). Polytomous item relational structure theory based on empirical distribution critical value. Advanced Materials Research, 472, 1329-1332.
Liu, L., Rogat, A., & Bertling, M. (2013). A CBAL™ science model of cognition: Developing a competency model and learning progressions to support assessment development (ETS RR-13-29). Retrieved from
http://onlinelibrary.wiley.com/doi/10.1002/j.2333-8504.2013.tb02336.x/epdf
Liu, H.C., Tsai, H.C. & Wu, S.N. (2013). Optimized threshold of the ordering
coefficient for item structure theory based on q-matrix theory. Paper presented at The 9th International Conference on Optimization: Techniques and Applications (ICOTA 9), Taipei, Taiwan.
Liu, H. C., Wu, S. N., Sheu, T. W., Chung, Y. T., & Tsai, H. C. (2012). Polytomous item ordering theory based on Ramsay’s kernel smoothing nonparametric item response theory. ICIC Express Letters: An International Journal of Research and Surveys, 6(6), 1537-1542.
Liu, H. C., Wu, S. N., Tsai, H. C., & Ou, Y. C. (2011, July). Polytomous ordering theory algorithm based on empirical distribution critical value. Paper presented at Machine Learning and Cybernetics (ICMLC), Guilin, China.
Marmaroti, P., & Galanopoulou, D. (2006). Pupils' understanding of photosynthesis: A questionnaire for the simultaneous assessment of all aspects. International Journal of Science Education, 28(4), 383-403.
Mayes, R. L., Forrester, J. H., Christus, J. S., Peterson, F. I., Bonilla, R., & Yestness, N. (2014). Quantitative reasoning in environmental science: A learning progression. International Journal of Science Education, 36(4), 635-658.
Merritt, J., Krajcik, J., & Shwartz, Y. (2008, June). Development of a Learning Progression for the Particle Model of Matter. Paper presented at the International Conference for the Learning Sciences, Utrecht, Netherlands.
Mislevy, R. J. (1993). Foundations of a new test theory. In N. Frederiksen, R. J. Mislevy, & I. I. Bejar (Eds.). Test theory for a new generation of tests (pp. 19-39). Hillsdale, NJ:Erlbaum.
Mohan, L., Chen, J., & Anderson, C. W. (2009). Developing a multi‐year learning progression for carbon cycling in socio‐ecological systems. Journal of research in science teaching, 46(6), 675-698.
National Research Council. (2001). Knowing what students know: The science and design of educational assessment. Washington, DC: The National Academies Press.
National Research Council. (2006). Systems for state science assessment. Washington,
DC: The National Academies Press.
National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: The National Academies Press.
National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Retrieved from https://www.nap.edu/read/13165/chapter/9#116
Neumann, I., Fulmer, G. W., & Liang, L. L. (2013a). Analyzing the FCI based on a force and motion learning progression. Science Education Review Letters, 8-14.
Neumann, I., Fulmer, G. W., Liang, L. L., & Neumann, K. (2013b, April). Empirical validation of a learning progression for Newton’s Third Law using items from the Force Concept Inventory. Paper presented at the National Association for Research in Science Teaching (NARST), Rio Grande, Puerto Rico.
Nichols, P. D. (1994). A framework for developing cognitively diagnostic assessments. Review of Educational Research, 64(4), 575-603.
Osborne, J. F., Henderson, J. B., MacPherson, A., Szu, E., Wild, A., & Yao, S. Y. (2016). The development and validation of a learning progression for argumentation in science. Journal of Research in Science Teaching, 53(6), 821-846.
Parker, J. M., Elizabeth, X., & Anderson, C. W. (2013). What learning progressions on carbon-transforming processes tell us about how students learn to use the laws of conservation of matter and energy. Educación Química, 24(4), 399-406.
Plummer, J. D., & Krajcik, J. (2010). Building a learning progression for celestial motion: Elementary levels from an earth‐based perspective. Journal of Research in Science Teaching, 47(7), 768-787.
Plummer, J. D., & Maynard, L. (2014). Building a learning progression for celestial motion: An exploration of students' reasoning about the seasons. Journal of Research in Science Teaching, 51(7), 902-929.
Plummer, J. D., Palma, C., Flarend, A., Rubin, K., Ong, Y. S., Botzer, B., & Furman, T. (2015). Development of a learning progression for the formation of the solar system. International Journal of Science Education, 37(9), 1381-1401.
Plummer, J. D., & Slagle, C. (2009, June). A learning progression approach to teacher professional development in astronomy. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
Ramlo, S. (2002, October). The Force and Motion Conceptual Evaluation. Paper presented at the Mid-Western Educational Research Association, Columbus, Ohio, OH.
Roseman, J.E., Caldwell, A., Gogos, A., & Kuth, L. (2006, April). Mapping a coherent learning progression for the molecular basis of heredity. Paper presented at the annual meeting of the National Association for Research on Science Teaching, San Francisco, CA.
Rosenblatt, R., & Heckler, A. F. (2011). Systematic study of student understanding of the relationships between the directions of force, velocity, and acceleration in one dimension. Physical Review Special Topics-Physics Education Research, 7(2), 020112.
Rubin, K., Plummer, J., Palma, C., Flarend, A., Spotts, H., McDonald, S., & Ong, Y. S. (2014). Assessing student progress along a solar system learning progression. Science Scope, 38(1), 27-33.
Salinas, I. (2009, June). Learning progressions in science education: Two approaches for development. Paper presented at the Learning Progressions in Science (LeaPS) Conference, Iowa City, IA.
Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D.,Shwartz, Y., Hug, B., & Krajcik, J. (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632-654.
Seah, R., Horne, M., & Berenger, A. (2016). High school students' knowledge of a
square as a basis for developing a geometric learning progression. In B. White,
M. Chinnappan & S. Trenholm (Eds.), Opening Up Mathematics Education Research (pp. 584-591). Adelaide, Australia.
Shea, N. A., & Duncan, R. G. (2013). From theory to data: The process of refining learning progressions. Journal of the Learning Sciences, 22(1), 7-32.
Siegler, R. S., & Richards, D. D. (1979). Development of time, speed, and distance concepts. Developmental Psychology, 15(3), 288.
Singapore Ministry of Education (2001). Singapore lower secondary science syllabus. Retrieved from http://www.moe.gov.sg/cpdd/doc/Science_LowSec_All.pdf.
Smith, C. L., Wiser, M., Anderson, C. W., & Krajcik, J. (2006). FOCUS ARTICLE: Implications of research on children's learning for standards and assessment: A proposed learning progression for matter and the atomic-molecular theory. Measurement: Interdisciplinary Research & Perspective, 4(1-2), 1-98.
Songer, N. B., Kelcey, B., & Gotwals, A. W. (2009). How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Research in Science Teaching, 46(6), 610-631.
Stiggins, R. J. (1991). Facing the challenges of a new era of educational assessment. Applied Measurement in Education, 4, 263-273.
Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi‐dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687-715.
Stevens, S. Y., Shin, N., & Peek-Brown, D. (2013). Learning progressions as a guide for developing meaningful science learning: A new framework for old ideas. Educación Química, 24(4), 381-390.
Suh, J., & Seshaiyer, P. (2015). Examining teachers’ understanding of the mathematical learning progression through vertical articulation during Lesson Study. Journal of Mathematics Teacher Education, 18(3), 207-229.
Suzuki, K., Yamaguchi, E., & Hokayem, H. (2015). Learning Progression for Japanese Elementary Students’ Reasoning about Ecosystems. Procedia-Social and Behavioral Sciences, 167, 79-84.
Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of “structure of matter”. International Journal of Science Education, 31(15), 2123-2136.
Talbot, R. M. (2013). Taking an item‐level approach to measuring change with the force and motion conceptual evaluation: An application of item response theory. School Science and Mathematics, 113(7), 356-365.
Tatsuoka, K. K. (1985). A probabilistic model for diagnosing misconceptions in the
Pattern classification approach. Journal of Educational Statistics, 10, 55-73.
Testa, I., Galano, S., Leccia, S., & Puddu, E. (2015). Development and validation of a learning progression for change of seasons, solar and lunar eclipses, and moon phases. Physical Review Special Topics-Physics Education Research, 11(2), 020102.
Thompson, P. W. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181-234). Albany, NY: SUNY Press.
Thornton, R. K., Kuhl, D., Cummings, K., & Marx, J. (2009). Comparing the force and motion conceptual evaluation and the force concept inventory. Physical Review Special Topics-Physics Education Research, 5(1), 010105.
Todd, A., & Kenyon, L. (2016). Empirical refinements of a molecular genetics learning progression: The molecular constructs. Journal of Research in Science Teaching, 53(9), 1385-1418.
Todd, A., & Romine, W. L. (2016). Validation of the learning progression-based assessment of modern genetics in a college context. International Journal of Science Education, 38(10), 1673-1698.
Todd, A., Romine, W. L., & Cook Whitt, K. (2017). Development and validation of the learning progression–based assessment of modern genetics in a high school context. Science Education, 101(1), 32-65.
Trowbridge, D. E., & McDermott, L. C. (1980). Investigation of student understanding of the concept of velocity in one dimension. American journal of Physics, 48(12), 1020-1028.
Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanding of the concept of acceleration in one dimension. American journal of Physics, 49(3), 242-253.
Vázquez‐Bernal, B., Mellado, V., Jiménez‐Pérez, R., & Leñero, M. (2012). The process of change in a science teacher's professional development: A case study based on the types of problems in the classroom. Science Education, 96(2), 337-363.
Wang, C. C., Ho, H. C., & Cheng, Y. Y. (2015). Building a learning progression for scientific imagination: A measurement approach. Thinking Skills and Creativity, 17, 1-14.
Wang, C. C., Niemi, H., Cheng, C. L., & Cheng, Y. Y. (2017). Validation of learning progression in scientific imagination using data from Taiwanese and Finnish elementary school students. Thinking Skills and Creativity, 24, 73-85.
Warfield, J. N. (1974). Developing interconnection matrices in structural modeling. IEEE Transactions on Systems, Man, and Cybernetics, 1, 81-87.
Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716-730.
Wu, H. M., Kuo, B. C., & Yang, J. M. (2012). Evaluating knowledge structure based adaptive testing algorithms and system development, Educational Technology & Society, 15(2), 73-88.
Wyner, Y., & Doherty, J. H. (2017). Developing a learning progression for three‐dimensional learning of the patterns of evolution. Science Education, 101(5), 787-817.
Xenos, M. (2004). Prediction and assessment of student behaviour in open and distance education in computers using Bayesian networks. Computers & Education, 43, 345-359.
Yin, Y., Tomita, M. K., & Shavelson, R. J. (2014). Using formal embedded formative assessments aligned with a short-term learning progression to promote conceptual change and achievement in science. International Journal of Science Education, 36(4), 531-552.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE