:::

詳目顯示

回上一頁
題名:任務導向式STEM帆船機器人主題統整課程的設計與評估之研究
作者:陳怡靜
作者(外文):Chen, Yi-Ching
校院名稱:國立臺灣師範大學
系所名稱:科技應用與人力資源發展學系
指導教授:張基成
學位類別:博士
出版日期:2019
主題關鍵詞:機器人機器人課程STEM教育STEM課程Arduino認知負荷任務導向教學robotrobotics curriculumSTEM curriculumSTEM educationArduinocognitive loadtask-oriented instruction
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:11
一、中文文獻
吳明隆、張毓仁(2011)。SPSS (PASW) 與統計應用分析 II。臺北市:五南。
李坤崇、歐慧敏(2001)。統整課程理念與實務。臺北市:心理。
林智中(2002)。課程統整真的比分科課程為好嗎?課程與教學,5(4),141-154。
邱皓政(2008)。量化研究與統計分析: SPSS中文視窗版資料分析範例解析。臺北市:五南。
高雄帆船學校(2013)。認識帆船課程。民108年6月20日,取自:http://140.115.236.72/demo-personal/xd703/web/C1300256/onlineV.html
教育部(2014)。十二年國教課程綱要總綱。103年11月。http://www.rootlaw.com.tw/LawContent.aspx?LawID=A040080081012600-1031128
單文經(2001)。解析Beane對課程統整理論與實際的主張。教育研究集刊,47,57-89。
游家政(2000)。學校課程的統整及其教學。課程與教學,3(1),19-37。

二、英文文獻
Abaid, N., Kopman, V., & Porfiri, M. (2013). An attraction toward engineering careers: The story of a Brooklyn outreach program for KuFFFD12 Students. IEEE Robotics & Automation Magazine, 20(2), 31-39.
Abdel-Salam, T., Sawaf, N. E., & Williamson, K. (2009). Robotics explorations to enhance information technology literacy in rural schools. Journal of Communication and Computer, 6(3), 55-63.
Akkerman, S. F., Bronkhorst, L. H., & Zitter, I. (2013). The complexity of educational design research. Quality and Quantity, 47(1), 421-439.
Alfieri, L., Higashi, R., Shoop, R., & Schunn, C. D. (2015). Case studies of a robot-based game to shape interests and hone proportional reasoning skills. International Journal of STEM Education, 2(1), 4.
Alimisis, D. (2013). Educational robotics: Open questions and new challenges. Themes in Science & Technology Education, 6(1), 63-71.
Altin, H., & Pedaste, M. (2013). Learning approaches to applying robotics in science education. Journal of Baltic Science Education, 12(3), 365-377.
Araújo, A., Portugal, D., Couceiro, M. S., & Rocha, R. P. (2015). Integrating Arduino-based educational mobile robots in ROS. Journal of Intelligent & Robotic Systems, 77(2), 281-298.
Arduino. (2018). Arduino official website. Retrieved 3 Oct, 2018, from http://www.arduino.cc/
Avsec, S., Rihtaršič, D., & Kocijancic, S. (2014). A predictive study of learner attitudes toward open learning in a robotics class. Journal of Science Education and Technology, 23(5), 692-704.
Barak, M., & Zadok, Y. (2007). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology and Design Education, 19(3), 289-307.
Barker, B. S., & Ansorge, J. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of Research on Technology in Education, 39(3), 229-243.
Barker, B. S., Nugent, G., & Grandgenett, N. F. (2014). Examining fidelity of program implementation in a STEM-oriented out-of-school setting. International Journal of Technology and Design Education, 24(1), 39-52.
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182.
Beane, J. A. (1997). Curriculum integration. New York: Teachers College Press.
Beane, J. A. (2011). Curriculum integration and the disciplines of knowledge. In J. Sefton-Green, P. Thomson, K. Jones, and L. B. Routledge (Eds.), The Routledge International Handbook of Creative Learning (pp. 193-199). New York, NY: Taylor and Francis.
Becker, K., & Park, K. (2011). Effects of integrative approaches among science, technology, engineering, and mathematics (STEM) subjects on students' learning: A preliminary meta-analysis. Journal of STEM Education: Innovations and Research, 12(5/6), 23.
Benitti, F. B. V. (2012). Exploring the educational potential of robotics in schools: A systematic review. Computers & Education, 58(3), 978-988.
Bers, M. U. (2007). Project InterActions: A multigenerational robotic learning environment. Journal of Science Education & Technology, 16(6), 537-552.
Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157.
Bybee, R. W. (2010, 08/27). What is STEM education? Science, 329(5995), 996-996.
Bybee, R. W. (2013). Case for STEM education : Challenges and opportunities. Arlington, VA: National Science Teachers Association.
Campbell, D. M., & Harris, L. S. (2001). Collaborative theme building: How teachers write integrated curriculum. Needham Heights, MA: Allyn & Bacon.
Carr, R. L., Bennett Iv, L. D., & Strobel, J. (2012). Engineering in the K-12 STEM standards of the 50 U.S. states: An analysis of presence and extent. Journal of Engineering Education, 101(3), 539-564.
Chen, Y., & Chang, C. C. (2018). The impact of an integrated robotics STEM course with a sailboat topic on high school students’ perceptions of integrative STEM, interest, and career orientation. EURASIA Journal of Mathematics, Science and Technology Education, 14(12).
Chism, N. V. N., & Szabó, B. S. (1997). How faculty development programs evaluate their services. Journal of Staff, Program, and Organization Development, 15(2), 55–62.
Corbalan, G., Kester, L., & van Merrienboer, J. J. G. (2008). Selecting learning tasks: Effects of adaptation and shared control on learning efficiency and task involvement. Contemporary Educational Psychology, 33(4), 733-756.
Cristoforis, P. D., Pedre, S., Nitsche, M., Fischer, T., Pessacg, F., & Pietro, C. D. (2013). A behavior-based approach for educational robotics activities. IEEE Transactions on Education, 56(1), 61-66.
Doerschuk, P., Bahrim, C., Daniel, J., Kruger, J., Mann, J., & Martin, C. (2016). Closing the gaps and filling the STEM pipeline: A multidisciplinary approach. Journal of Science Education and Technology, 1-14.
Eguchi, A. (2016). RoboCupJunior for promoting STEM education, 21st century skills, and technological advancement through robotics competition. Robotics and Autonomous Systems, 75, 692-699.
English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), 1-8.
Felder, R. M., Brent, R., & Prince, M. J. (2011). Engineering instructional development: Programs, best practices, and recommendations. Journal of Engineering Education, 100(1), 89-122.
Feldon, D. F., Timmerman, B. C., Stowe, K. A., & Showman, R. (2010). Translating expertise into effective instruction: The impacts of cognitive task analysis (CTA) on lab report quality and student retention in the biological sciences. Journal of Research in Science Teaching, 47(10), 1165-1185.
Fernandes, A., Couceiro, M. S., Portugal, D., Machado Santos, J., & Rocha, R. P. (2015). Ad hoc communication in teams of mobile robots using zigbee technology. Computer Applications in Engineering Education, 23(5), 733-745.
Fogarty, R. (1991). Ten ways to integrate curriculum. Educational Leadership, 49(2), 61-65.
Fogarty, R., Stoehr, J., & Gardner, H. (2008). Integrating curricula with multiple intelligences (2nd ed.). Thousand Oaks, CA: Corwin Press.
Fortunati, L., Esposito, A., Ferrin, G., & Viel, M. (2014). Approaching social robots through playfulness and doing-it-yourself: Children in action. Cognitive Computation, 6(4), 789-801.
Francom, G. M., & Gardner, J. L. (2013). How task-centered learning differs from problem-based learning: Epistemological influences, goals, and prescriptions. Educational Technology, 53(3), 33-38.
Galeriu, C., Edwards, S., & Esper, G. (2014). An arduino investigation of simple harmonic motion. The Physics Teacher, 52(3), 157-159.
Gonzalez-Gomez, J., Valero-Gomez, A., Prieto-Moreno, A., & Abderrahim, M. (2012). A new open source 3d-printable mobile robotic platform for education. In U. Rückert, S. Joaquin, and W. Felix (Eds.), Advances in autonomous mini robots (pp. 49-62). Berlin Heidelberg, Germany: Springer.
Hagedorn, L. S., & Purnamasari, A. V. (2012). A realistic look at STEM and the role of community colleges. Community College Review, 40(2), 145-164.
Hernandez, P., Bodin, R., Elliott, J., Ibrahim, B., Rambo-Hernandez, K., Chen, T., & Miranda, M. (2014). Connecting the STEM dots: Measuring the effect of an integrated engineering design intervention. International Journal of Technology & Design Education, 24(1), 107-120.
Hussain, S., Lindh, J., & Shukur, G. (2006). The effect of LEGO training on pupils' school performance in mathematics, problem solving ability and attitude: Swedish data. Journal of Educational Technology & Society, 9(3), 182-194.
Jacobs, H. H., Supervision, A. F., & Development, C. (1989). Interdisciplinary curriculum. Alexandria, VA : Association for Supervision and Curriculum Development.
Jalani, N. H., & Sern, L. C. (2014). Effects of example-problem based learning on transfer performance in circuit theory. Journal of Technical Education and Training, 6(2), 28-37.
Jaulin, L., & Le Bars, F. (2013). An interval approach for stability analysis: Application to sailboat robotics. IEEE Transactions on Robotics, 29(1), 282-287.
Jojoa, E. M. J., Bravo, E. C., & Cortes, E. B. B. (2010). Tool for experimenting with concepts of mobile robotics as applied to children's education. IEEE Transactions on Education, 53(1), 88-95.
Jungck, J. R., Gaff, H. D., Fagen, A. P., & Labov, J. B. (2010). Beyond BIO2010: Celebration and opportunities at the intersection of mathematics and biology. CBE-Life Sciences Education, 9(3), 143-147.
Kalyuga, S., & Liu, T. C. (2015). Guest editorial: Managing cognitive load in technology-based learning environments. Educational Technology & Society, 18(4), 1-8.
Kalyuga, S., & Singh, A. M. (2016). Rethinking the boundaries of cognitive load theory in complex learning. Educational Psychology Review, 28(4), 831-852.
Kanter, D. E. (2010). Doing the project and learning the content: Designing project-based science curricula for meaningful understanding. Science Education, 94(3), 525-551.
Katehi, L., Pearson, G., & Feder, M. (2009). Engineering in K-12 education: understanding the status and improving the prospects. Washington, DC: The National Academies Press.
Kennedy, T. J., & Odell, M. R. L. (2014). Engaging students in STEM education. Science Education International, 25(3), 246-258.
Kirschner, P., Sweller, J., & Clark, R. E. (2006). Why unguided learning does not work: An analysis of the failure of discovery learning, problem-based learning, experiential learning and inquiry-based learning. Educational Psychologist, 41(2), 75-86.
Kolodner, J. L., Camp, P. J., Crismond, D., Fasse, B., Gray, J., Holbrook, J., Puntambekar, S., & Ryan, M. (2003). Problem-based learning meets case-based reasoning in the middle-school science classroom: Putting learning by design(tm) into practice. Journal of the Learning Sciences, 12(4), 495-547.
Krajcik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning‐goals‐driven design model: Developing curriculum materials that align with national standards and incorporate project‐based pedagogy. Science Education, 92(1), 1-32.
Kubilinskiene, S., Zilinskiene, I., Dagiene, V., & Sinkevièius, V. (2017). Applying robotics in school education: A systematic review. Baltic Journal of Modern Computing, 5(1), 50-69.
Leppink, J., Paas, F., van Gog, T., van der Vleuten, C. P. M., & van Merriënboer, J. J. G. (2014). Effects of pairs of problems and examples on task performance and different types of cognitive load. Learning and Instruction, 30, 32-42.
Lindh, J., & Holgersson, T. (2007). Does lego training stimulate pupils’ ability to solve logical problems? Computers & Education, 49(4), 1097-1111.
López-Rodríguez, F. M., & Cuesta, F. (2016). Andruino-A1: Low-cost educational mobile robot based on Android and Arduino. Journal of Intelligent & Robotic Systems, 81(1), 63-76.
Mahoney, M. (2010). Students’ attitudes towards STEM: Development of an instrument for high school STEM-based programs. Journal of Technology Studies, 36(1), 53-64.
Marvel, J. A., Falco, J., & Marstio, I. (2015). Characterizing task-based human–robot collaboration safety in manufacturing. IEEE Transactions on Systems, Man & Cybernetics. Systems, 45(2), 260-275.
Mason, R., & Cooper, G. (2013). Mindstorms robots and the application of cognitive load theory in introductory programming. Computer Science Education, 23(4), 296-314.
Meissner, B., & Bogner, F. X. (2013). Towards cognitive load theory as guideline for instructional design in science education. World Journal of Education, 3(2), 24-37.
Merrill, M. D. (2002a). First principles of instruction. Educational Technology Research & Development, 50(3), 43-59.
Merrill, M.D. (2002b). A pebble-in-the-pond model for instructional design. Performance Improvement, 41(7), 39–44.
Merrill, M. D. (2007). A task-centered instructional strategy. Journal of Research on Technology in Education, 40(1), 5-22.
Merrill, M. D. (2009). Finding e³ (effective, efficient, and engaging) instruction. Educational Technology, 49(3), 15-26.
Merrill, M. D., & Gilbert, C. G. (2008). Effective peer interaction in a problem centered instructional strategy. Distance Education, 29(2), 199-207.
Mitnik, R., Nussbaum, M., & Recabarren, M. (2009). Developing cognition with collaborative robotic activities. Educational Technology & Society, 12(4), 317-330.
Mondada, F., Bonani, M., Riedo, F., Briod, M., Pereyre, L., Rétornaz, P., & Magnenat, S. (2017). Bringing robotics to formal education: The Thymio open-source hardware robot. IEEE Robotics & Automation Magazine, 24(1), 77-85.
Nugent, G., Barker, B., & Grandgenett, N. (2012). The impact of educational robotics on student STEM learning, attitudes, and workplace skills. In B. Barker, G. Nugent, N. Grandgenett, & V. Adamchuk (Eds.), Robots in K-12 education: A new technology for learning (pp. 186–203). Hershey, PA: IGI Global.
Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. I. (2010). Impact of robotics and geospatial technology interventions on youth STEM learning and attitudes. Journal of Research on Technology in Education, 42(4), 391-408.
Nugent, G., Barker, B., Grandgenett, N., & Welch, G. (2016). Robotics camps, clubs, and competitions: Results from a US robotics project. Robotics and Autonomous Systems, 75, Part B, 686-691.
Paas, F., van Gog, T., & Sweller, J (2010). Cognitive load theory: New conceptualizations, specifications, and integrated research perspectives. Educational Psychology Review, 22(2), 115-121.
Petre, M., & Price, B. (2004). Using robotics to motivate ‘back door’ learning. Education & Information Technologies, 9(2), 147-158.
Pêtrès, C., Romero-Ramirez, M., & Plumet, F. (2012). A potential field approach for reactive navigation of autonomous sailboats. Robotics & Autonomous Systems, 60(12), 1520-1527.
Plumet, F., Petres, C., Romero-Ramirez, M.-A., Gas, B., & Ieng, S.-H. (2015). Toward an autonomous sailing boat. IEEE Journal of Oceanic Engineering, 40(2), 397-407.
Rihtaršič, D., Avsec, S., & Kocijancic, S. (2016). Experiential learning of electronics subject matter in middle school robotics courses. International Journal of Technology and Design Education, 26(2), 205-224.
Rockland, R., Bloom, D.S., Carpinelli, J., Burr-Alezander, L., Hirsch, L.S., Kimmel, H. (2010). Advancing the “E” in K-12 STEM education. The Journal of Technology Studies, 36(1), 53-64.
Rusk, N., Resnick, M., Berg, R., Pezalla-Granlund, M. (2008). New pathways into robotics: Strategies for broadening participation. Journal of Science Education and Technology,17, 59-69.
Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469-508.
Seul, J. (2013). Experiences in developing an experimental robotics course program for undergraduate education. IEEE Transactions on Education, 56(1), 129-136.
Siiman, L. A., Pedaste, M., Tõnisson, E., Sell, R., Jaakkola, T., & Alimisis, D. (2014). A review of interventions to recruit and retain ICT students. International Journal of Modern Education and Computer Science, 6(3), 45-54.
Silk, E. M., Higashi, R., Shoop, R., & Schunn, C. D. (2009). Designing technology activities that teach mathematics: Teaching mathematics in a technology classroom requires more than simply using mathematics with technology. The Technology Teacher, 69(4), 21-28.
Slangen, L., van Keulen, H., & Gravemeijer, K. (2011). What pupils can learn from working with robotic direct manipulation environments. International Journal of Technology and Design Education, 21(4), 449-469.
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological methodology, 13, 290-312.
Somyürek, S. (2015). An effective educational tool: Construction kits for fun and meaningful learning. International Journal of Technology and Design Education, 25(1), 25-41.
Stohlmann, M., Moore, T. J., & Roehrig, G.H. (2012). Considerations for teaching integrated STEM education. Journal of Pre-College Engineering Education research, 2(1), 28-34.
Sullivan, F. R., & Heffernan, J. (2016). Robotic construction kits as computational manipulatives for learning in the STEM disciplines. Journal of Research on Technology in Education, 48(2), 105-128.
Sullivan, F. R., & Lin, X. (2012). The ideal science student: Exploring the relationship of Students' perceptions to their problem solving activity in a robotics context. Journal of Interactive Learning Research, 23(3), 1-36.
Sullivan, F. R., & Moriarty, M. A. (2009). Robotics and discovery learning: Pedagogical beliefs, teacher practice, and technology integration. Journal of Technology and Teacher Education, 17(1), 109-142.
Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational Psychology Review, 22(2), 123-138.
Ucgul, M., & Cagiltay, K. (2014). Design and development issues for educational robotics training camps. International Journal of Technology and Design Education, 24(2), 203-222.
van Gog, T., Paas, F., & Sweller, J. (2010). Cognitive load theory: Advances in research on worked examples, animations, and cognitive load measurement. Educational Psychology Review, 22(4), 375-378.
Van Merriënboer, J. J., & Kirschner, P. A. (2012). Ten steps to complex learning: A systematic approach to four-component instructional design. Mahwah, NJ: Erlbaum.
Van Merriënboer, J. J. G., Kester, L., & Paas, F. (2006). Teaching complex rather than simple tasks: Balancing intrinsic and germane load to enhance transfer of learning. Applied Cognitive Psychology, 20(3), 343-352.
Van Merrienboer, J. J., & Sweller, J. (2005). Cognitive load theory and complex learning: Recent developments and future directions. Educational Psychology Review, 17(2), 147-177.
Van Merriënboer, J. J. G., & Sweller, J. (2010). Cognitive load theory in health professional education: Design principles and strategies. Medical Education, 44(1), 85-93.
Wiggins, G. P., & McTighe, J. (2011). The understanding by design guide to creating high-quality units. Alexandria, VA: Association for Supervision and Curriculum Development.
Wiggins, G. T., & McTighe, J. (2005). Understanding by design. Alexandria, VA: Association for Supervision and Curriculum Development.
Williams, D. C., Ma, Y., Prejean, L., Ford, M. J., & Lai, G. (2008). Acquisition of physics content knowledge and scientific inquiry skills in a robotics summer camp. Journal of Research on Technology in Education, 40(2), 201-216.
Yilmaz, M., Ozcelik, S., Yilmazer, N., & Nekovei, R. (2013). Design-oriented enhanced robotics curriculum. IEEE Transactions on Education, 56(1), 137-144.
Young-Corbett, D. E., Nussbaum, M. A., & Winchester Iii, W. W. (2010). Usability evaluation of drywall sanding tools. International Journal of Industrial Ergonomics, 40(1), 112-118.
Yuen, T. T., Boecking, M., Stone, J., Tiger, E. P., Gomez, A., Guillen, A., & Arreguin, A. (2014). Group tasks, activities, dynamics, and interactions in collaborative robotics projects with elementary and middle school children. Journal of STEM Education: Innovations and Research, 15(1), 39-45.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
QR Code
QRCODE