:::

詳目顯示

回上一頁
題名:論證為主的探究教學模式對六年級學童探究學習影響之研究
作者:楊惟程
作者(外文):Wei-Cheng Yang
校院名稱:國立彰化師範大學
系所名稱:科學教育研究所
指導教授:靳知勤
段曉林
學位類別:博士
出版日期:2015
主題關鍵詞:思考工具探究教學探究能力科學論證國小學童Inquiry competencyInquiry instructionScientific argumentationSchoolchildrenThinking tools
原始連結:連回原系統網址new window
相關次數:
  • 被引用次數被引用次數:期刊(0) 博士論文(0) 專書(0) 專書論文(0)
  • 排除自我引用排除自我引用:0
  • 共同引用共同引用:0
  • 點閱點閱:12
本研究設計論證為主的探究模式(Argumentation-based Inquiry Model),簡稱AI 模式,並探討AI 模式對六年級學童探究學習的影響。AI模式由讀、做、寫等三個階段組成,每一階段皆融入論證元素,藉以引導學童在探究活動中利用論證元素做為探究思考的工具。本研究採用質量合併的研究設計,量的研究部分利用準實驗研究法,實驗組實施AI 模式,探究教學活動中融入Toulmin和Walton的論證元素,控制組實施一般的探究教學,不提供論證元素;質的研究部分則在研究歷程中透過所收集的觀察、活動單、訪談等資料利用對話分析與詮釋性研究分析。研究對象為中部一所常態編班的小學六年級四個班學童,其中兩班為實驗組(n=53)與另外兩班為控制組(n=52),教學者是二位資深科學教師,教學單元為水溶液與電磁作用,教學時間每週三節課,教學活動持續10週。資料的收集與分析包括:五次Oregon州科學探究任務評量,三次探究思考能力測驗、建構式學習環境量表(CLES)、科學學習動機量表(SMTSL),以及課室錄影、訪談、學童心得札記和學習活動調查表等。研究結果顯示,經歷10週探究教學,學童持續使用論證元素從事探究思考其探究能力也獲得增長(p&;lt;.01),AI模式能夠促進小組討論的探究思考品質與頻率,CLES分析結果顯示實驗組學童覺得比較能展現主動建構知識的行為與有效的探究思考,SMTSL分析結果顯示AI模式可以讓學童覺得持有正向的學習動機;比較兩組學童對探究活動的學習回應,AI模式提供論證元素從事探究思考,所以實驗組學童覺得探究活動像是做科學,一般的探究活動因易於跳脫探究思考,故讓控制組學童覺得像是做功課。文末提出國小科學老師實施探究教學應該主動提供學童外加式的探究思考工具等研究建議。
This study aimed to investigate the effectiveness of integrating argumentation with inquiry on 6th graders’ inquiry learning. The argumention-based inquiry model was emphasized argumentation components into each stage of science inquiry. This model can enhance students’ scientific thinking during inquiry process. We adopted mixed-methods in which the quasi-experimental research with qualitative analysis. Four sixth-grade classes of 105 students at a suburban elementary school located in central Taiwan were chosen. The experimental group (n=53) was administered with inquiry-based instruction with argumentation components; the control group (n=52) was administered with mainly inquiry-based instruction. The instructors were two experienced science teachers. Ten-week inquiry-based instruction covered the units of aqueous solution and electroweak interaction. Data collections included the scores of five subunits task in Oregon Standards, the scores of scientific inquiry assessments, Constructivist Learning Environment Survey [CLES] and Students’ Motivation Toward Science Learning [SMTSL] during ten weeks, in addition students’ responses and feedbacks to inquiry learning and video tapes of science classroom were collected. The ANCOVA analysis revealed that the experimental group outperformed the control group in inquiry competency (p&;lt;0.01), the analysis of CLES revealed the experimental group performed better constructivist learning and effective scientific thinking, and the analysis of SMTSL revealed the argumentation-based inquiry model could maintain schoolchildren’s positive motivation. Furthermore, the analysis of responses to students’ inquiry learning indicated that using argumentation components during inquiry-based activities had many significant learning benefits, and that promoting the students to do scientific thinking with argumentation can enhance students’ experiencing of science instead of learning the lessons. Finally, this study suggested that the science teacher should provide additional thinking tools like argumentation components for schoolchildren to do inquiry.
參考文獻
一、中文文獻
方德隆(譯)(2004a)。課程基礎理論(原作者:Ornstein, A. C.和Hunkins, F. P.)。臺北市:臺灣培生教育出版 高等教育發行。
方德隆(譯)(2004b)。課程發展與設計(原作者:Ornstein, A. C.和Hunkins, F. P.)。臺北市:臺灣培生教育出版 高等教育發行。
王文科、王智弘(2006)。教育研究法 (增訂十版)。臺北市:五南出版社。new window
王保進(2006)。中文視窗版SPSS與行為科學研究。臺北市:心理出版社
古智雄、孫東志、陳文正、楊文金(2010)。從「熱認知觀點」探討學童科學解釋之合理性判斷─以班級社會常模下的順一致性為例。科學教育學刊,18(4),305-329。new window
朱經明(2001)。教育統計學(三版)。臺北市:五南出版社。
李乃信(譯)(2009)。熱力學練功寶典-熱的簡史(原作者:Fenn, J. B.)。臺北市:天下文化。
李松濤、林煥祥、洪振方(2010)。探究式教學對學童科學論證能力影響之探究。科學教育學刊,18(3),177-203。new window
林盈君(2006)。一位國小教師作文教學慎思歷程之研究(未出版之碩士論文)。國立臺北教育大學,臺北市。
林清山(譯)(1994)。教育心理學─認知取向(原作者:Mayer, R. E.)。臺北市:遠流出版社。
林清山(1993)。心理與教育統計學。臺北市:東華書局。
林燕文、洪振方(2007)。對話論證的探究中學童論述策略對促進科學概念理解之研究。屏東教育大學學報,26,285-324。new window
林樹聲(2012)。在科學課堂中應用爭議性議題教學促進國小六年級學生道德思考。科學教育學刊,20(5),435-459。new window
洪振方(2010)。思考導向的探究式學習對國二學生科學探究能力的影響。科學教育學刊,18(5),389-415。new window
馬秀蘭(2007)。學生思考過程之探究−以實務推理為例。科學教育學刊,15(4),387-416。new window
教育部(2003)。國民中小學九年一貫課程綱要。臺北市:教育部。new window
陳忠志、Taylor, P. C.、Aldridge, J. M. (1998)。國中教師科學本質及科學教學信念對理化教室環境的影響。科學教育學刊,6(4),383-402。new window
康瑞華(2012)。批判構建啟思:福斯特生態馬克思主義思想研究。北京:中國社會科學出版社。
郭生玉(1995)。心理與教育測驗。新北市:精華書局。
張春興(1996)。教育心理學。臺北市:東華書局。
黃光國(2003)。社會科學的理路。臺北市:心理出版社。
靳知勤(2007)。科學教育應如何提升學生的科學素養-台灣學術精英的看法。科學教育學刊,15(6),627-646。new window
靳知勤、楊惟程、段曉林(2010a)。國小學童的非形式推理之研究–以生物複製議題之引導式論證為例。課程與教學季刊,13(1),209-232。new window
靳知勤、楊惟程、段曉林 (2010b)。引導式Toulmin論證模式對國小學童在科學讀寫表現上的影響。科學教育學刊,18(5),443-467。new window
楊文金 (1998)。同儕科學家意像對訊息合理性判斷的影響分析。師大學報:科學教育類,43(1),1-17。
蔡執仲、段曉林、靳知勤(2007)。巢狀探究教學模式對國二學生理化學習動機影響之探討。科學教育學刊,15(2),119-144。new window
蔡佩穎、張惠博、林雅慧、張文華(2010)。小組立場、小組組成及文本特性對於學生論證生殖遺傳新聞之效應。科學教育學刊,18(3),253-276。new window
魯旭東(譯)(2007)。科學究竟是什麼?(原作者:Chalmers, A. F.)。北京市:商務印書館。
蘇明俊(2007)。發展野外探究學習環境量表之研究。新竹教育大學教育學報,24(1),61-84。new window
盧秀琴、洪榮昭、蔡春微(2008)。5 Why”鷹架式提問提升國小學生學習成就與科學探究學習能力之研究~以「如何做麵包?」教學模組為例。科學教育學刊,16(4),395-413。new window
顏瓊芬、黃世傑(2003)。學生在開放式科學探究過程中互動模式之研究。科學教育學刊,11(2),141-169。new window

二、英文文獻
Acar, O., Turkmen, L., &; Roychoudhury, A. (2010). Student difficulties in socio-scientific argumentation and decision-making research findings: Crossing the borders of two research lines. International Journal of Science Education, 32(9), 1191-1206.
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry? Journal of Science Teacher Education, 13(1), 1-12.
American Association for the Advancement of Science. (1993). Benchmarks for Science Literacy. New York, NY: Oxford University Press.
Ben-David, A., &; Zohar, A. (2009). Contribution of meta-strategic knowledge to scientific inquiry learning. International Journal of Science Education, 31(12), 1657-1682.
Bensley, D. A., Crowe, D. S., Bernhardt, P., Buckner, C., &; Allman, A. L. (2010). Teaching and assessing critical thinking skills for argument analysis in psychology. Teaching of Psychology, 37(2), 91-96.
Boehmer. K. S. (Ed). (1998). The American heritage dictionary for learners of English. New York, NY: Houghton Mifflin company.
Bricker, L. A., &; Bell, P. (2009). Concep¬tualizations of argumentation from science studies and the learning sciences and their implications for the practices of science edu¬cation. Science Education, 92(3), 473-498.
Brown, B. A., Reveles, J. M., &; Kelly, G. J. (2005). Scientific literacy and discursive identity: A theoretical framework for understanding science learning. Science Education, 89, 779-802.
Cahill, A. J., &; Bloch-Schulman, S. (2012). Argumentation step-by-step: Learning critical thinking through deliberate practice. Teaching Philosophy, 35, 41-62.
Calfee, R., &; Drum, P. (1986). Research on teaching reading. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 804-849). New York, NY: Macmillan.
Carin, A., Bass, J. E., &; Contant, T. L. (2005). Teaching science as inquiry. New Jersey, NJ: Upper Saddle River.
Chalmers, A. F. (1999). What is this thing called science? (3rd Ed.) Indianapolis, IN: Hackett Publishing.
Collins, A., Brown, J. S., &; Newman, S. E. (1989). Cognitive apprenticeship: Teaching the craft of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning, and instruction: Essays in honor of Robert Glaser (pp. 453-494). Hillsdale, NJ: Erlbaum.
Cross, D., Taasoobshirazi, G., Hendricks, S., &; Hickey, D. T. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30(6), 837-861.
Dawes, L. (2004). Talk and learning in classroom science. International Journal of Science Education, 26(6), 677-695.
Diket, R., &; Mucha, L. (2002). Talking about violent images. Art Education, 55(2), 11-16.
Driver, R., Newton, P., &; Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84, 287-312.
Duke, N. K. (2004). The role of text and text-reader interactions in young children's reading development and achievement. The Elementary School Journal, 105, 183-197.
Duschl, R. A., &; Osborne, J. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39-72.
Duschl, R. (2007). Supporting and promoting argumentation discourse in science. In C.-F. Yen (Chair), Keynote speech (1). Symposium conducted at the 2007 International Conference on Reading, Writing, and Argumentation in Science and Mathematics Education, National Changhua University of Education, Taiwan.
Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran &; M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 47-69). Dordrecht, The Netherlands: Springer.
Falk, H., &; Yarden, A. (2009). “Here the scientists explain what I said.” coordination practices elicited during the enactment of the results and discussion sections of adapted primary literature. Research in Science Education, 39, 349-383.
Fisher, R. (2001). Philosophy in primary schools: Fostering thinking skills and literacy. Reading, 35(2), 67-73.
Fuller, R., &; Kuhne, G. (2008). Fostering meaningful interaction in health education online courses: Matching pedagogy to course types. International Journal of Information and Communication Technology Education, 4(1), 44-55.
Gee, J. P. (1999). An introduction to Discourse analysis: Theory and method. London, England and New York, NY: Routledge.
Germann, P. J. (1991). Developing science process skills through directed inquiry. The American Biology Teacher, 53(4), 243-247.
Gibson, H. L., &; Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students’ attitudes toward science. Science Education, 86, 693-705.
Gray, A., &; Summers, D. (Eds.). (1983). Longman Dictionary of American English (Taiwan edition). New York, NY: Longman Inc.
Hammer, A., &; van Zee, E. (2006). Seeing the science in children's thinking: Case studies of student inquiry in physical science. Portsmouth, NH: Heinemann.
Jiménez-Aleixandre, M. P., Rodríguez, A. B., &; Duschl, R. A. (2000). “Doing the lesson” or “doing science”: Argument in high school genetics. Science Education, 84(6), 757-792.
Jiménez-Aleixandre, M. P. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171-1190.
Jiménez-Aleixandre, M. P., &; Pereiro-Munoz, C. (2002). Knowledge procedures or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171-1190.
Jiménez-Aleixandre, M. P., &; Erduran, S. (2008). Argumentation in science education: An overview. In S. Erduran &; M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3-27). Dordrecht, The Netherlands: Springer.
Jonassen, D., &; Kim, B. (2010). Arguing to learn and learning to argue: design justifications and guidelines. Educational Technology Research &; Development, 58(4), 439-457.
Kittleson, J. M., &; Southerland, S. A. (2004). The role of Discourse in group knowledge construction: A case study of engineering students. Journal of Research in Science Teaching, 41, 267-293.
Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310.
Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62, 155-178.
Kuhn, D. (2002). What is scientific thinking and how does it develop? In U. Goswami (Ed.), The Blackwell handbook of childhood cognitive development (pp. 371-393). Oxford, UK: Blackwell.
Kuhn, D., Goh, W., Iordanou, K., &; Shaenfield, D. (2008). Arguing on the computer: A microgenetic study of developing argument skills in a computer-supported environment. Child Development, 79(5), 1310-28.
Kuhn, D. (2010a). Teaching and learning science as argument. Science Education, 94, 810-824.
Kuhn, D. (2010b). What is scientific thinking and how does it develop? In U. Goswami (Ed.), Handbook of childhood cognitive development (2nd Ed.). Oxford, UK: Blackwell.
Kuhn, D., &; Crowell, A. (2011a). Dialogic argumentation as a vehicle for developing young adolescent’s thinking. Psychological Science, 22, 545-552.
Kuhn, D., &; Crowell, A. (2011b). Argumentation as a path to the thinking development of young adolescents. Evanston, IL: Society for Research on Educational Effectiveness (SREE). (ERIC Number: ED519122)
Lawrenz, F., Huffman, D., &; Welch, W. (2001). The science achievement of various subgroups on alternative assessment formats. Science Education, 85(3), 279-290.
Lemke, J. L. (1998). Teaching all the language of science: Word, symbols, images and actions. Retrieved from http://academic.brooklyn.cuny.edu/education/
jlemke/papers/barcelon.htm
Lin, H.-S., Hong, Z.-R, &; Cheng, Y.-Y. (2009). The interplay of the classroom learning environment and inquiry-based activities. International Journal of Science Education, 31(8), 1013-1024.
Lin, S.-S. (2014). Science and non-science undergraduate students’ critical thinking and argumentation performance in reading a science news report. International Journal of Science and Mathematics Education, 12(5), 1023-1046.
Lubben, F., Sadeck, M., Scholtz, Z., &; Braund, M. (2010). Gauging students’ untutored ability in argumentation about experimental data: A South Africa case study. International Journal of Science Education, 32(16), 2143–2166.
McNeill, K. L., &; Pimentel, D. S. (2010). Scientific discourse in three urban classrooms: The role of the teacher in engaging high school students in argumentation. Science Education, 94(2), 203-229.
Manktelow, K. I. (1999). Reasoning and thinking. Hove, UK: Psychology Press.
Morgan, W., &; Beaumont, G. (2003). A dialogic approach to argumentation: Using a chat room to develop early adolescent students' argumentative writing. Journal of Adolescent &; Adult Literacy, 47(2), 146-158.
National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
National Research Council. (2000). Inquiry and the National Science Education Standards. Washington, DC: National Academy Press.
National Research Council. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A.Schweingruber, and Andrew W. Shouse, Editors. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
Newton, P., Driver, R., &; Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553-576.
Nordstrom, K. (2013). Choosing foothold ideas. Retrieved from http://umdberg.pbworks.com/w/page/68372126/Choosing%20foothold%20ideas%20(2013)
Norris, S. P., &; Phillips, L. M. (1994). Interpreting pragmatic meaning when reading popular reports of science. Journal of Research in Science Teaching, 31(9), 947-967.
Norris, S. P., &; Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science Education, 87, 224-240.
Nussbaum, M. E. (2002). Scaffolding argumentation in the social studies classroom. Social Studies, 93(3), 79-84.
OECD PISA (2013). PISA 2012 Results. Retrieved from http://www.oecd.org/pisa/keyfindings/pisa-2012-results.htm
Ogan-Bekiroglu, F., &; Eskin, H. (2012). Examination of the relationship between engagement in scientific argumentation and conceptual knowledge. International Journal of Science and Mathematics Education, 10, 1415-1443.
Oregon Department Education (2011). Teaching and learning to standards: Science. Retrieved from http://www.beaverton.k12.or.us/pdf/ins/ins_sci-tls200709.pdf
Ornstein, A. C., &; Hunkins, F. C. (2004). Curriculum: Foundations, principles, and iissues (4th Ed.). Boston, MA: Allyn and Bacon, Pearson.
Ornstein, A. C., &; Hunkins, F. C. (2009). Curriculum: Foundations, principles, and iissues (5th Ed.). Boston, MA: Allyn and Bacon, Pearson.
Osborne, J., Erduran, S., &; Simon, S. (2004a). Ideas, evidence &; argument in science. London, England: King’s College.
Osborne, J., Erduran, S., &; Simon, S. (2004b). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994-1020.
Osborne, J. (2010). Arguing to learn in science: The role of collaborative, critical discourse. Science, 328(5977), 463-468.
Redish, E. F. (2005). Problems for intermediate methods in theoretical Physics. Retrieved from http://www.physics.umd.edu/perg/MathPhys/Problems-HW/MP10.htm
Reznitskaya, A., Anderson, R. C., &; Kuo, L.-J. (2007). Teaching and learning argumentation. Elementary School Journal, 107(5), 449-472.
Sadler, T. D., &; Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42, 112-138.
Samarapungavan, A., Mantzicopoulos, P., &; Patrick, H. (2008). Learning science through inquiry in kindergarten. Science Education, 92, 868-908.
Sampson, V., &; Clark, D. (2008). Assessment of the ways students generate arguments in science education: Current perspectives and recommendations for future directions. Science Education, 92(3), 447- 472.
Sampson, V., &; Gleim, L. (2009). Argument-driven inquiry to promote the understanding of important concepts and practices in biology. The American Biology Teacher, 71(8), 465-472.
Sampson, V., Grooms, J., &; Walker, J. (2009). Argument-driven inquiry: A way to promote learning during laboratory activities. The Science Teacher, 76(8), 42-47.
Sandoval, W. A., &; Reiser, B. J. (2004). Explanation-driven inquiry: Integrating conceptual and epistemic scaffolds for scientific inquiry. Science Education, 88, 345-372.
Schwab, J. J. (1963). Biology teachers’ handbook. New York, NY: Wiley.
Shymansky, J. A. (2005). Defining and measuring reading comprehension. In W. H Chang (Chair), Reading and writing data analysis and interpretation. Symposium conducted at the Reading and Writing in Science and Mathematics- International Conference, National Changhua University of Education, Taiwan.
Simon, S., Erduran, S., &; Osborne, J. (2006). Learning to teach argumentation: Research and development in the science classroom. International Journal of Science Education, 28, 235-260.
Southerland, S., Kittleson, J., Settlage, J., &; Lanier, K. (2005). Individual and group meaning-making in an urban third grade classroom: Red fog, cold cans, and seeping vapor. Journal of Research in Science Teaching, 42, 1032-1061.
Taylor, P. C., Dawson, V., &; Fraser, B. J. (1995). Classroom Learning Environment: A constructivist perspective. Paper presented at the annual meeting of the American Educational Research Association, San Francisco, CA.
Toulmin, S. E. (1958). The uses of argument. Cambridge, UK: Cambridge University Press.
Trend, R. (2009). Commentary: Fostering students' argumentation skills in geoscience education. Journal of Geoscience Education, 57(4), 224-232.
Tuan, H. L., Chin, C. C., &; Shieh, S. H. (2005). The development of a questionnaire to measure students’ motivation towards science learning. International Journal of Science Education, 27(6), 639-654.
Tuan, H. L., Chin, C. C., Tsai, C. C.&; Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles student. International Journal of Science and Mathematics Education, 3(4), 541-566.
Vygotsky, L. S. (1986). Thought and language. Cambridge, MA: MIT Press.
Wellington, J., &; Osborne, J. (2001). Language and literacy in science education. Philadelphia, PA: Open University Press.
Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice? Science Education, 87, 112-143.
Walton, D. N. (1989). Dialogue theory for critical thinking. Argumentation, 3, 169- 184.
Walton, D. N. (1996). Argumentation schemes for presumptive reasoning. Mahwah, NJ: Erlbaum.
Yang, W.-C., Chin, C.-C., &; Tuan, H.-L. (2012). The effects of scientific thinking strategies upon sixth graders’ inquiry abilities. Paper presented in the 2012 ASET Annual International Conference, Taipei, Taiwan.
Yerrick, R. K. (2000). Lower track students’ argumentation and open inquiry instruction. Journal of Research in Science Teaching, 37(8), 807-838.
Yore, L. D., Bisanz, G. L., &; Hand, B. M. (2003). Examining the literacy component of science literacy: 25 years of language arts and science research. International Journal of Science Education, 25(6), 689-752.
Yore, L. D., Pimm, D., &; Tuan, H. L. (2007). The literacy component of mathematical and scientific literacy. International Journal of Science and Mathematics Education, 5, 559–589.
Yore, L. D. (2012). Science Literacy For All - More than a slogan, logo, or rally flag! In K. C. D. Tan, M. Kim &; S. Hwang (Eds.), Issues and challenges in science education research: Moving forward (pp. 5-23). Dordrecht, The Netherlands: Springer.
Zeidler, D. L. (1997). The central role of fallacious thinking in science education. Science Education, 81, 483-496.
Zeidler, D. L., Sadler, T. D., Simmons, M. L., &; Howes, E. V. (2005). Beyond STS: A research based framework for socioscientific issues education. Science Education, 89, 357-377.
Zeidler, D. L., &; Sadler, T. D. (2008). The role of moral reasoning in argumentation: Consciene, character, and care. In S. Erduran &; M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 201-216). Dordrecht, The Netherlands: Springer.
Zembal-Saul, C. (2009). Learning to teach elementary school science as argument. Science Education, 93(4), 687-719.
Ziman, J. (2000). Are debatable scientific questions debatable? Social Epistemology, 14, 187-199.
Zion, M., Michalsky, T., &; Mevarech, Z. R. (2005). The effects of metacognitive instruction embedded within an asynchronous learning network on scientific inquiry skills. International Journal of Science Education, 27(8), 957-983.
Zohar, A., &; Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39(1), 35-62.
Zuckerman, G., Chudinova, E., &; Khavkin, E. (1998). Inquiry as a pivotal element of knowledge acquisition within the Vygotskian paradigm: Building a science curriculum for the elementary school. Cognition and Instruction, 16, 201–233

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
:::
無相關著作
 
無相關點閱
 
QR Code
QRCODE